AD-768 788

MS-2152

OPERATION MINE SHAFT

DISTRIBUTION OF NATURAL AND ARTIFICIAL EJECTA RESULTING FROM DETONATION OF 100-TON TNT CHARGE ON GRANITE: MINERAL ROCK EVENT

J. W. MEYER A. D. ROOKE, JR.

U. S. ARMY ENGINEER WATERWAYS EXPERIMENT STATION P. O. BOX 631 VICKSBURG, MISSISSIPPI 39180

ISSUANCE DATE: SEPTEMBER 1973

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report ore not to be construed as on official Department of the Army position unless so designated by other outhorized documents.

OPERATION MINE SHAFT

DISTRIBUTION OF NATURAL AND ARTIFICIAL EJECTA RESULTING FROM DETONATION OF 100-TON TNT CHARGE ON GRANITE: MINERAL ROCK EVENT

J. W. MEYER A. D. ROOKE, JR.

U. S. ARMY ENGINEER WATERWAYS EXPERIMENT STATION P. O. BOX 631 VICKSBURG, MISSISSIPPI 39180

ISSUANCE DATE: SEPTEMBER 1973

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

THE CONTENT OF THIS REPORT ARE NOT TO BE USED FOR ADVERTISING, PUBLICATION, OR PROMOTIONAL PURPOSES. CITATION OF TRADE NAMES DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS.

ABSTRACT

Event Mineral Rock, the detonation of a 100-ton spherically shaped charge of TNT on granite, was the last event of the Mine Shaft Series, a program of high-explosive tests primarily concerned with ground shock and cratering effects from explosions at or near the surface of a competent rock medium. The series, conducted in 1968 and 1969, was intended as a follow-on to previously conducted similar experiments in soil.

Mineral Rock (1969) duplicated the geometry and yield of Event Mine Ore (1968). Studies of crater ejecta were conducted to determine debris density and distribution, to examine the role of the ejection mechanism in crater formation, and to obtain additional information on the hazards associated with natural missiles. Mineral Rock, with a maximum observed ejecta range of approximately 2,800 feet for a 1-pound particle, produced a larger crater and a more extensive ejecta field than its predecessor, Mine Ore.

In addition to established methods of ejecta measurement, aerial photography was introduced to obtain spoil volume and distribution parameters. A comprehensive artificial missile experiment was included, and limited impact measurements were obtained from the terminal trajectories of small natural particles. As with other events in rock that preceded the Mine Shaft Series, the influence of rock jointing on ejecta distribution was evident. Volumetric analysis indicated that 230 yd 3 of in situ material was ejected from the crater, about 90 yd 3 of which was deposited in the crater lip. A factor of $w^{0.3}$ (W = charge weight) was confirmed for empirical scaling of ejecta ranges common to the Mine Ore/Mineral Rock test geometry. Size distribution as a function of range for discrete particles was also established, confirming that smaller particles (4 to 8 inches in diameter) tend to dominate the ejecta field at distances greater than 25 to 30 crater radii from the detonation.

Throwout regions common to the Mine Ore/Mineral Rock test geometry were satisfactorily defined, with good agreement being noted between the two events. In general, the ejecta mechanics resembled those associated with a surface burst in soil.

PREFACE

The Mine Shaft Series of high-explosive tests, sponsored by the Defense Nuclear Agency, included participation by a number of agencies under the technical direction and support of the U. S. Army Engineer Waterways Experiment Station (WES). Mr. L. F. Ingram of the Weapons Effects Laboratory (WEL), WES, served as Technical Director for the Mine Shaft Series. Mr. J. N. Strange, also of WEL, was Director of Program 1 (Cratering and Ejecta Studies).

Subtask SX30311, "Ejecta Studies," was prepared and executed during the period August through October 1969 as a part of Program 1 by Messrs. A. D. Rooke, Jr., Project Officer, and J. W. Meyer, the authors of this report. Fragment simulation tests intended to develop rock missile terminal trajectory data were performed by Mr. W. G. Dykes of WES; Dr. B. Rohani of WES made computer calculations for the same purpose. Assistance in the field was provided by Messrs. C. A. Miller and S. B. Price of WES. Mr. Price also assisted in data reduction, as did SP5 H. L. Knudson, and the report draft was prepared by Miss Virginia Mason of WEL. Finally, acknowledgment is made of the field personnel of all projects, especially Boeing Company personnel, who were helpful in locating, marking, and reporting artificial missiles and colored-grout fragments used in this study.

Mr. G. L. Arbuthnot, Jr. (retired), and Mr. W. J. Flathau were Chiefs of WEL during the conduct of this study and preparation of this report. COL Levi A. Brown, CE, BG Ernest D. Peixotto, CE, and COL G. H. Hilt, CE, were Directors of WES, and Mr. F. R. Brown was Technical Director.

CONTENTS

ABSTRACT
PREFACE
NOTATIONS AND ABBREVIATIONS
CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT 13
CHAPTER 1 INTRODUCTION 12
1.1 Background
CHAPTER 2 EXPERIMENTAL PROCEDURES
2.1 Test Site
CHAPTER 3 RESULTS 38
3.1 Ejecta Distribution and Areal Density
CHAPTER 4 DISCUSSION OF RESULTS
4.1 Ejecta Areal Density, Volume, and Distribution
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 102
5.1 Conclusions

APPENDIX	K B COMPUTER PROGRAM FOR ANALYSIS OF AERIAL PHOTOGRAPHY EJECTA COUNT	41
REFEREN	CES 11	12
TABLES		
2.1	Distribution and Areal Density of Ejecta from Within the	24
3.2	Distribution and Areal Density of Ejecta from Collector	43
3.3	Results of Sieve Analysis of Small Material From Collector	41
3.4		45
3.5		46
3.6		48
3.7		50
3.8		51
4.1		76
4.2		79
4.3		85
4.4		36
4.5		37
A.1	Ejecta Data from Photograph No. 73 10	
A.2	Ejecta Data from Photograph No. 74 10	
A.3	Ejecta Data from Photograph No. 81 10	
A.4	Ejecta Data from Photograph No. 97	
A.5	Ejecta Data from Photograph No. 116 12	
A.6	Ejecta Data from Photograph No. 117 13	
A.7	Ejecta Data from Photograph No. 136	
A.8	Ejecta Data from Photograph No. 137 11	
B.1	GE-400 Series, Fortran IV Computer Program for Analysis of	
	Aerial Photography Data 11	12
FIGURES		
1.1	Typical half-crater profile and nomenclature for surface or near-surface burst	16
2.1		25
2.2	Preshot view of the Mineral Rock test site looking toward	
	the southwest	26
2.3	Engineering classification for Cedar City tonalite as com-	
	pared with other intact granites	27
2.4		28
2.5	Shot geometry for Event Mineral Rock, a 100-ton TNT	
2.6	Sectors for collecting continuous ejecta in and immediately	29
	adjacent to the crater lip, Event Mineral Rock	30
2.7	Sieving of ejecta from the Mineral Rock crater lip at a	
	rock-crushing plant (Western Rock Products Corp., Cedar	
0 0		31
2.8	Array of ejecta collector areas, Event Mineral Rock 3	32

2.9	Mineral Rock charge and ejecta collector areas				
2.10					
	photography exposure number				
2.11	Bead- and color-coded grout columns of Subtask 30110				
2.12	Preshot locations and positions of the artificial missiles				
	for Event Mineral Rock				
2.13	Artificial missiles (cylinder packages and sphere packages)				
5	prior to emplacement in NX-size boreholes				
3.1	Mineral Rock apparent crater and adjacent debris field				
3.2	A 400-pound fragment of a larger missile that landed about				
5.2	1,200 feet northeast of GZ				
3.3	Range of particle-size distributions for <6-inch ejecta				
5.5	particles in collector areas (see Table 3.3)				
3.4	Plane-table survey of the ejecta field periphery, Stations				
J • ·	1 through 12				
3.5	Final artificial missile positions in the crater area				
3.6	Final artificial missile positions along the north radial-				
3.7	Final artificial missile positions along the south radial				
3.8	Final artificial missile positions along the west radial				
	Recovered cylinder and spheres that were embedded in a				
3.9	block of rock ejected into the crater lip				
4.1					
4 • 1	Ejecta areal mass density contours in and adjacent to the crater lip				
4.2	Ejecta mass density versus range				
4.2	Distribution of missiles by size as a function of mange				
4.3	Distribution of missiles by size as a function of range from GZ				
4.4					
4.4	Maximum missile ranges r _e for Mine Shaft Events (HOB = 0.9 charge radius)				
4.5					
4.)	Percentage of ejecta volume (or weight) as a function of range from GZ				
4.6					
	Range contours for artificial missiles on north radial				
4.7	Range contours for artificial missiles on south radial				
4.8	Range contours for artificial missiles on west radial				
4.9	Contours of mean horizontal displacement of rock dis-				
1. 7.0	sociated along southeast radial of grout columns				
4.10	Zones of origin of crater and ejecta debris				
4.11	Comparison of ejecta distribution with range for Mineral				
	Rock, Mine Ore, and buried explosions				

NOTATIONS AND ABBREVIATIONS

Notations

- A Presented area
- c Sonic velocity
- C Constant representing effects of air drag in ballistic range equation
- d Missile height
- $E_{_{W}}$ Weight of ejected material
- g Acceleration due to gravity
- K Constant in ejecta areal density equation
- & Missile length
- n Exponent of range R in ejecta areal density equation
- p Shock-front pressure
- R Range (distance from ground zero)
- v Particle velocity
- V Initial velocity of ejected particle
- w Missile width
- W Charge weight
- W_{c} Calculated missile weight
- W Measured missile weight
- W_t Missile weight based upon presented area
 - α Particle exit angle
 - γ Specific (unit) weight
 - δ Ejecta areal density
- π Pi, a constant, ≈ 3.142
- ρ Mass density
- σ Standard deviation from the mean

Crater notations are given in Figure 1.1.

Abbreviations

- GZ Ground zero, the hypocenter or epicenter of detonation
- HOB Height of burst

msl Mean sea level, a reference plane

NX Standard core size used in exploratory drilling, ≈ 3 inches in diameter

TNT Trinitrotoluene, a chemical (high) explosive

WEL Weapons Effects Laboratory

WES U. S. Army Engineer Waterways Experiment Station

CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT

British units of measurement used in this report can be converted to metric units as follows:

Multiply	Ву	To Obtain
inches	2.54	centimeters
feet	0.3048	meters
miles (U. S. statute)	1.609344	kilometers
feet per second	0.3048	meters per second
milcs per hour	1.609344	kilometers per hour
square inches	6.4516	square centimeters
square fect	0.092903	square meters
cubic feet	0.0283168	cubic meters
cubic yards	0.764555	cubic meters
pounds	0.45359237	kilograms
tons (2,000 pounds)	0.907185	metric tons
pounds per square inch	0.070307	kilograms per square centimeter
pounds per square foot	4.88243	kilograms per square meter
pounds per cubic foot	16.02	kilograms per cubic meter
Fahrenheit degrees	a	Celsius or Kelvin degrees

^a To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use the following formula: C = (5/9)(F - 32). To obtain Kelvin (K) readings, use: K = (5/9)(F - 32) + 273.15.

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Events Mineral Lode and Mineral Rock were continuations of the Mine Shaft Series begun in 1968 (Reference 1). The primary objective of this test series was to study the effects of explosion-induced ground shock and cratering on or beneath the surface of a rock medium. A secondary objective was to observe the response of structures and structural components within the blast environment. Major effects measured were ground shock for the Mineral Lode Event (buried charge) and cratering, ejecta, ground shock, and airblast for the Mineral Rock Event (near-surface charge).

Mine Shaft was specifically designed to provide information on explosion effects in a rock medium, for which there is a paucity of data. Most large-scale explosive testing has been conducted in desert alluvium of the western United States and sandy clay of Canada. However, the interest in recent years in hardened military facilities in rock has required additional data to determine survivability of such facilities from hits or near misses of nuclear weapons. Since cratering and crater ejecta are among the prime destructive agents of an explosion, quantitative measurements of these phenomena are important. Of particular interest are the long-range ejecta strike probabilities on exposed structural elements of a facility.

1.2 OBJECTIVES

The primary objective of this study was to determine the ejecta areal density (in terms of weight per unit area, i.e., pounds per square foot¹), range, and azimuthal distribution associated with the Mineral Rock Event. Secondary objectives were: (1) to obtain

A table of factors for converting British units of measurement to metric units is presented on page 11.

information on the mechanics of crater formation by surveying the original and final positions of ejected material, and (2) to obtain information from which quantitative estimates of ejecta trajectory parameters and accompanying hazards could be made.

1.3 THEORY

The crater, its lip, and surrounding regions of deformation common to a surface or near-surface explosion are illustrated in Figure 1.1; the basic theory for an ejecta study is described in Reference 1. Briefly restated, predictions of ejecta parameters for any given explosion follow two general approaches: (1) a consideration of initial particle velocities based upon shock conditions, and (2) scaling of other experimental results to the yield under consideration.

The first approach is expressed by the fundamental ballistic equation for range

$$R = C \frac{V_0^2 \sin 2\alpha}{g}$$
 (1.1)

Where: R = range (distance from ground zero)

C = a constant that is dependent on the effects of air drag

V = initial velocity (speed) of a given ejecta particle

 α = starting or exit angle (with respect to the horizontal plane) of the particle

g = acceleration due to gravity

Reference 2, which includes some observations of ejecta particles, expresses C as a ratio of the observed range to the range in a vacuum.

The exit angle α is generally dependent upon shot geometry, and C must be selected to best represent the environmental conditions to which the particle will be subjected. Estimation of initial particle velocity depends upon conditions just behind the shock front according to the equation

$$v = \frac{p}{\rho c} \tag{1.2}$$

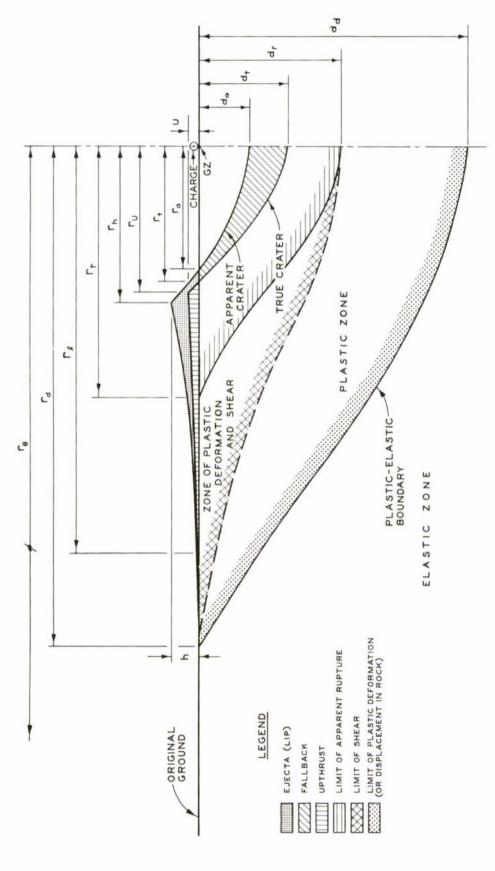
Where: v = particle velocity

p = shock-front pressure

 ρ = the medium's mass density

c = sonic velocity in the medium

The quantities o and c can be readily determined experimentally; however, assigning a value to p requires use of a basic assumption concerning the origin of the ejected material. Material in direct contact with the charge is probably pulverized; therefore, ejected particles of practical interest are assumed to originate in areas slightly removed from the charge. Experience has shown that, for test geometries between that of a true surface burst and that of an above-surface tangent burst, the long-range ejecta generally originate near the ground surface at a distance approximately equal to one charge radius from the charge-medium interface (Reference 3). Thus, to determine maximum ejecta range, the value selected for p should represent the shockfront pressure at about this point. The resulting particle velocity can then be substituted into Equation 1.1 to calculate missile range. The major limitations of this method are (1) Equation 1.2 does not consider energy and velocity losses due to comminution, interparticle collisions, etc; and (2) the equation expresses a particle velocity in the direction of the spherically diverging ground-shock wave rather than toward ground surface, where ejection actually occurs. For these reasons, values of initial velocity and accompanying ranges are generally higher than those observed.


The second approach to predicting ejecta parameters involves empirical scaling procedures relating other experimental results to the current test. Considerable effort in cratering and ejecta research has been made toward developing the proper scaling relationships for various phenomena, both theoretically (through dimensional analysis methods) and experimentally. As yet, there has been little agreement between theory and experiment. For example, scaling factors for ejecta velocities and ranges have varied from as low as W^{1/6} where W is charge weight (Reference 4, which presents results of a dimensional analysis using mass-gravity relations) to as high as W^{0.4} (Reference 5, in which

scaling factors are determined empirically from surface bursts in rock). The discrepancy seems to result from the fact that the effects of certain parameters such as charge geometry have not been evaluated completely and are not included in dimensional analysis procedures. Presently, empirically determined scaling factors provide the most reliable means of predicting cratering and ejecta effects.

1.4 PRESHOT PREDICTIONS

Since Mineral Rock duplicated the 1968 Event Mine Ore, the best predictions of ejecta ranges for Mineral Rock were the results of Mine Ore. These are given in Reference 6 and are: (1) maximum range = 2,500 feet, and (2) 90 percent missile range = 1,375 feet. The 90 percent missile range represents the radial distance within which 90 percent (by weight) of all ejecta is found.

However, as shown later, Mineral Rock results did not duplicate Mine Ore results; rather, they agreed more closely with original Mine Ore predictions, which are given in Reference 1 as: (1) maximum range = 3,000 feet, and (2) 90 percent missile range = 1,300 feet.

Typical half-crater profile and nomenclature for surface or near-surface burst. Profiles represents the crater lip crest and dimensions are symmetrical about the centerline. Various radial and depth dimensions are indi-Z n, and Uplift is given by d, respectively. and ч Figure 1.1 cated by height.

CHAPTER 2

EXPERIMENTAL PROCEDURES

2.1 TEST SITE

The Mine Shaft test site was located on a granite intrusion in the Iron Mountains of southwestern Utah, about 8 miles northwest of Cedar City, Utah. Figure 2.1 is a map of the test site area. The region has a semidesert environment with juniper trees, sage, and cactus as the predominant vegetation (Figure 2.2). The site is characterized by a thin layer of sandy silt soil (desert alluvium) with intermittent smoothly rounded rock outcrops. The site is approximately 5,900 feet above mean sea level (msl), and the area slopes gently toward the east at about 2 degrees. A steep 500-foot-high peak is located about 2,000 feet southwest of the site. Prior to testing, the area within approximately 100 feet of ground zero (GZ) was cleared of soil and weathered rock. The trees and brush were cleared as necessary to give an open area of 1,000-foot radius around GZ.

Results of a petrographic examination (Reference 7) showed the rock at the test site as tonalite (Shand's classification system), a light-colored, medium- to fine-grained igneous rock. The rock at the test site consisted of a fine-grained matrix of quartz, plagioclase feldspar, pyroxene, clay (montmorillonite and vermiculite), biotite, and magnetite grains. Examination of near-surface core samples showed the rock to be somewhat weathered, friable, and cracked. The basic physical properties of the tonalite, which is a granitoid rock, are listed below:

Specific gravity	2.6
Porosity	5 percent
Tensile strength	900 psi
Unconfined compressive strength	15,000 psi
Young's modulus of elasticity (unconfined)	$3.0 \times 10^{6} \text{ psi}$
Initial angle of shearing intact samples jointed samples	45 degrees 37 degrees

According to the classification system in Reference 8, the Cedar City tonalite would be classified as borderline between CA and CL (Figure 2.3), indicating medium strength and an average to low modulus-to-compressive strength ratio.

The rock mass in the vicinity of Mineral Rock GZ was moderately jointed, with the major joint zones trending in a north-south direction (Reference 9). Figure 2.4 is a map of the surface joints adjacent to GZ. Most joints were nearly vertical, and the wider joints tended to narrow rapidly below the surface. Some of the larger joints indicated slight downward faulting. One well-developed surface joint pattern involved the swirls of rock that occur in the Mineral Rock area. While not fully understood, these onionlike formations may be either stress relief features that formed after jointing or planes of parting that developed as the magma cooled geologic ages ago. Subsurface joint spacing averaged one joint about every 6 inches down to 10 feet below ground surface and decreased markedly with greater depth.

2.2 TEST GEOMETRY AND ENVIRONMENTAL CONDITIONS

This phase of the Mine Shaft Series consisted of two high-explosive (HE) charges: Mineral Lode, detonated on 5 September 1969, and Mineral Rock, detonated on 7 October 1969. Mineral Lode was a 16-ton, ammonium nitrate slurry charge buried 100 feet. This depth was chosen to approximate that of containment, where a camouflet would be formed but no explosion gases would be vented. Since Mineral Lode produced no significant ejecta field (Reference 10), it will not be considered further in this report.

Mineral Rock was a 100-ton near-surface burst. The charge was composed of 32.6-pound blocks of trinitrotoluene (TNT) stacked to approximate a 15.7-foot-diameter sphere (Figure 2.5). The height of burst (HOB) relative to charge center of gravity was 0.9 charge radius, or 7.07 feet.

As mentioned previously, Mineral Rock duplicated Event Mine Ore, which was detonated on 13 November 1968. The geographical coordinates for Mineral Rock were latitude 37°46'10.033" N and longitude

113°10'52.037" W; this zero point was about 130 feet northeast of the old Mine Ore GZ. Part of the shot preparation for Mineral Rock included an effort to clear the area of ejecta from Mine Ore. This was accomplished mostly by grading. Just prior to shot day, a search of the area was made, and remaining ejecta of significant size were marked with spray paint so that they could be easily distinguished from ejecta resulting from the detonation of Mineral Rock.

Time of the Mineral Rock detonation was 1200 hours (to the nearest second). Shot day was partly cloudy and a stiff wind was blowing from the south (190 degrees) at 16.1 mph. The surface temperature was 68 F and the barometric pressure was 11.8 psi; relative humidity was 28 percent (Reference 11).

2.3 EJECTA MASS DENSITY AND DISTRIBUTION SAMPLING TECHNIQUES

To determine the areal mass density and distribution of ejecta resulting from the Mineral Rock Event, the ejecta field was divided into two regions: (1) the continuous ejecta region (within the crater lip), and (2) the discontinuous ejecta region (beyond the crater lip). Four techniques were used to collect data, one in the continuous ejecta region and three in the discontinuous ejecta region.

2.3.1. Ejecta Within and Adjacent to the Crater Lip. Following the shot, the crater lip was divided into 30-degree sectors (Figure 2.6) extending from 40 feet from GZ, the approximate edge of the apparent crater, to 100 feet from GZ, the outer limit of the continuous ejecta region. Each 30-degree sector was further divided into four areas by radial increments of 15 feet. The sectors for sampling (shaded sectors in Figure 2.6) were selected to provide continuous data points along four radial sectors and on two concentric rings circling GZ. Due to the inregularity of the lip extremity, some of the sampling areas lay slightly beyond the lip. These areas were recorded and the data were separated during analysis (Section 4.1). Ejecta collection was accomplished in coordination with Subtask SX30110, "Cratering Effects Investigations."

and was placed in a dump truck. The material was then hauled to a local rock-crushing plant where the total sample was weighed and then sieved into four size classifications: >12 inches, >6 to 12 inches, >3 to 6 inches, and <3 inches. Figure 2.7 shows the sieving operation with the material passing through a series of screens on a rock-crushing machine, then onto conveyor belts where material of each size classification falls into a separate truck and is weighed. The data obtained were analyzed to determine areal mass density and size distribution of ejecta in the crater lip as a function of radial distance from GZ.

2.3.2. Ejecta Beyond the Crater Lip. Three techniques were used to sample ejecta falling beyond the crater lip: (1) hand collection of ejecta from predesignated collector areas, (2) aerial photography, and (3) peripheral plane-table survey.

The ejecta collector areas were used in the expected transition region between the continuous and discontinuous ejecta. Forty areas were laid out in an array extending from 75 to 200 feet from GZ, as shown in Figure 2.8. Each area covered 100 ft². In the areas that were bare rock, the rock surface was painted red. The areas that were composed of alluvium were marked with pins at the four corners and the center of the area. In the alluvium areas, recovery of sand-sized ejecta particles was impossible, since there was no practical means of separating the particles from the in situ material. The entire ejecta sampling procedure in and adjacent to the lip was necessarily unrefined, but the procedure was adequate to gain an appreciation of the depostion in this area.

Figure 2.9 is an aerial photograph showing the Mineral Rock charge and the surrounding collector areas. After the shot, samples were collected from only 22 of these areas (shaded in Figure 2.8) because the inner areas fell in the continuous ejecta region that was sampled as part of the crater lip. All rock debris within each sampled area was gathered and weighed and then sized into groups with diameters <6 inches, 6 to 12 inches, and >12 inches. For each sampled area, all, or a representative sample, of the minus 6-inch material was retained for a more detailed laboratory sieve analysis.

The ejecta beyond the crater lip was sampled primarily by aerial photography. A mosaic of low-altitude photographs was planned to provide a complete picture of the debris field out to a radial distance of 1,000 feet from GZ. A contract was negotiated with a commercial firm to accomplish the aerial photography and to perform a sample count of ejected rock particles down to the 3- to 4-inch size from photograph enlargements. Due to various technical and fly-over difficulties, the photography did not effectively cover the designated 2,000-foot-diameter area. However, a sufficient number of photographs were obtained for sampling purposes and for establishing the methodology associated with this approach to an ejecta study. Eight pictures taken at various ranges from GZ (Figure 2.10) were selected for a detailed missile count. These pictures were enlarged, and the missiles were counted and sized into five classifications: 4 to 8 inches, > 8 to 12 inches, >12 to 18 inches, >18 to 2^{14} inches, and > 2^{14} inches. The coordinates of each missile were determined with respect to GZ, and all information was recorded on computer cards. The data were analyzed on a digital computer to determine ejecta areal density and size distribution relations as functions of radial distance.

The outer periphery of the cjecta field was mapped by a plane-table survey to determine the maximum range of natural missiles.

Mapping was restricted to rock fragments weighing approximately 1 pound or more. Heavier pieces whose weights were difficult to estimate were weighed in a sling and spring-scale device. The area covered was an are of about 170 degrees running clockwise from west to east-northeast. Broken terrain toward the east and southeast, a restricted Air Force test area toward the south, and a large hill toward the southwest restricted the mapping effort. However, a visual search was made of these areas, and extreme missile ranges were estimated.

2.4 TECHNIQUES FOR EVALUATING MISSILE TRAJECTORIES

Three experiments were designed to meet the secondary objective of evaluating missile trajectory parameters. These experiments involved the use of: (1) colored-grout ejecta, (2) artificial

missiles, and (3) styrofoam missile traps.

2.4.1 Colored-Grout Ejects. An array of colored-grout columns (Figure 2.11) was emplaced during the conduct of Subtask SX30110, "Cratering Effects Investigations," to aid in defining the true crater and rupture envelope boundaries and in determining residual displacements surrounding the crater. The upper portions of the grout columns that were within the expected true crater were divided into 1-foot increments by the addition of colored beads to the grout mixture. For the purposes of the ejecta study, the beaded portions of the columns provided source material for tracing the ejecta origins. After the shot, those pieces of the grout columns found in the ejecta field were identified and their final positions were recorded.

2.4.2 Artificial Missiles. The artificial missile experiment served a purpose similar to that of the colored-grout experiment, with the addition that information on ballistic coefficients and drag characteristics for missiles of known shape and density was obtainable. Two basic missile shapes, cylinders and spheres, were used. The cylinders were made of aluminum and were 2.5 inches in diameter. The cylinders were emplaced in packages, each package consisting of one 4-, 2-, and 1-inch-long cylinder and one 1-inch-long cylinder divided into one half-cylinder and two quarter-cylinder wedges. The spheres were made of plastic, aluminum, steel, or lead, and were either 1 or 2 inches in diameter. The spheres were emplaced in packages that each contained two 1-inch and one 2-inch spheres of each of the four materials.

Table 2.1 gives the physical properties of the artificial missiles. One-hundred ninety-seven cylinder packages and 60 packages of spheres, making a total of 1,902 artificial missiles, were emplaced preshot in an array of NX-size (approximately 3 inches in diameter) holes extending along radials to the north, south, and west of GZ. Figure 2.12 shows the locations, relative to GZ, of all boreholes containing artificial missiles along with the positions of the missile packages in the holes. All holes were backfilled with strength-matching grout. Figure 2.13 shows missile packages and cylinders just prior to emplacement. Each

missile was stamped with a three-digit number giving its initial position with respect to radial number, hole number, and depth. For example, a cylinder marked 154 was orginally emplaced on Radial 1 (south radial) in the fifth hole from GZ and was in the fourth cylinder package below ground surface. Preshot depths of all cylinder and sphere packages were recorded in the field. In addition, twenty-three 7.4-inch-diameter aluminum spheres were emplaced in four borcholes to the north of GZ at the request of the Aerospace Corporation, a participating agency. These spheres were number coded and their preshot positions were recorded. They served the same purpose as the other artificial missiles but were larger and brightly polished so that they could possibly be visible in the technical photography and thus provide data on initial missile trajectory parameters. Unfortunately, this was unsuccessful. Postshot, a search was made for all artificial missiles, which, when found, were identified and mapped by plane-table survey.

2.4.3 Styrofoam Missile Traps. The final missile trajectory experiment involved the use of styrofoam missile traps designed to obtain data on terminal trajectory parameters. The traps were made of 26-psi styrofoam, 4 feet by 8 feet by 6 inches thick, emplaced so that the top surface was flush with the ground surface. Five traps were placed along the west radial at distances of 249, 346, 509, 607, and 706 feet from GZ. A single trap was also placed 224 feet south of GZ. After the shot, those traps that survived were recovered and those portions containing embedded missiles were cut out. Impact angles and depths of penetration were later measured, and impact velocities were estimated on the basis of calibration tests conducted in a fragment simulator and on the basis of the results of a computer program on penetration parameters.

TABLE 2.1 PHYSICAL PROPERTIES OF ARTIFICIAL MISSILES

Spheres			Cylir	nders ^a
Diameter	Material	Weight	Length	Weight
inches		pounds	inches	pounds
1	Aluminum	0.05	14	1.82
1	Lead	0.22	2	0.91
1	Plastic	0.02	1	0.46
1	Steel	0.15	ıb	0.23
2	Aluminum	0.40	ı ^c	0.12
2	Lead	1.72		
2	Plastic	0.20		
2	Steel	1.19		
7.4	Aluminum	20.30		

^a All cylinders were made of aluminum and were 2.5 inches in diameter.

b One-half cylinder wedge of a l-inch cylinder.

 $^{^{\}rm c}$ One-quarter cylinder wedge of a 1-inch cylinder.

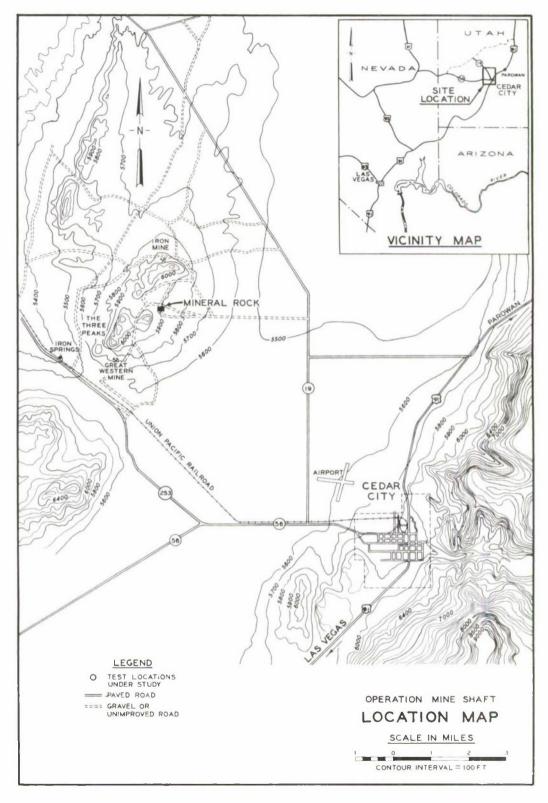


Figure 2.1 Location and vicinity maps for Mineral Rock. Contours are in feet above mean sea level.

Figure 2.2 Preshot view of the Mineral Rock test site looking toward the southwest.

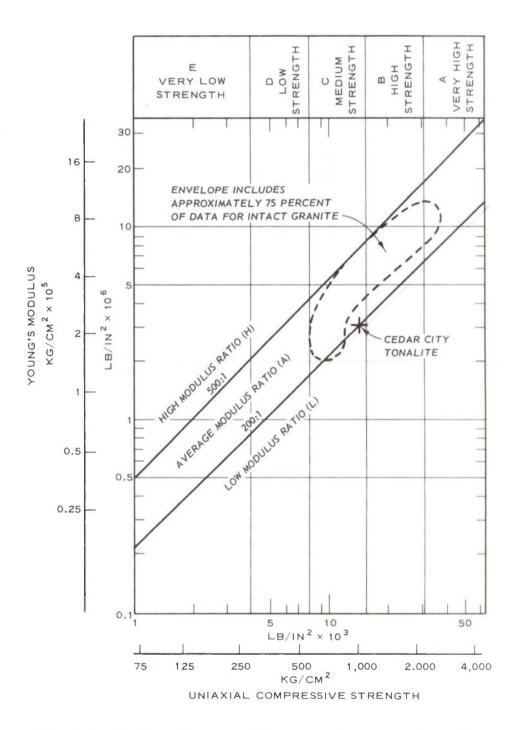


Figure 2.3 Engineering classification for Cedar City tonalite as compared with other intact granites.

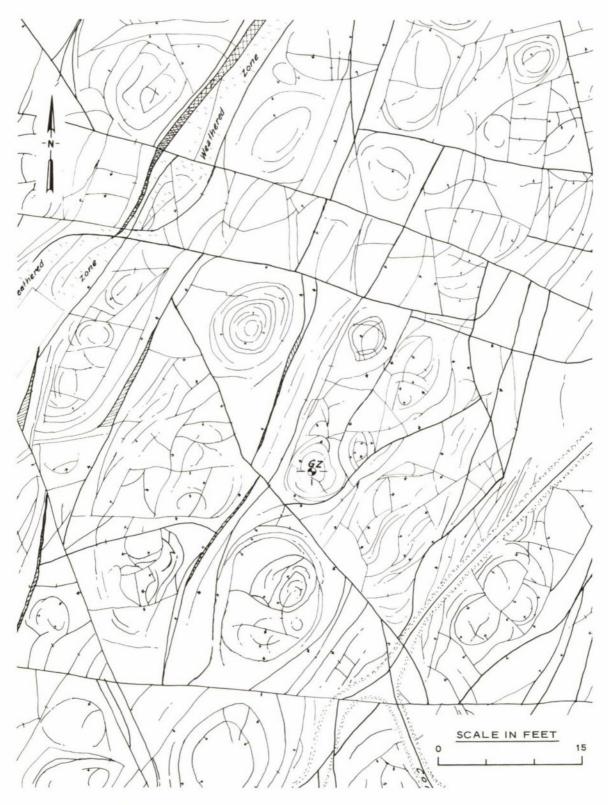
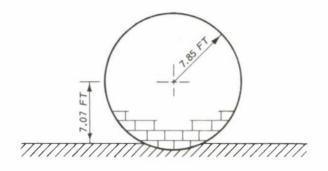
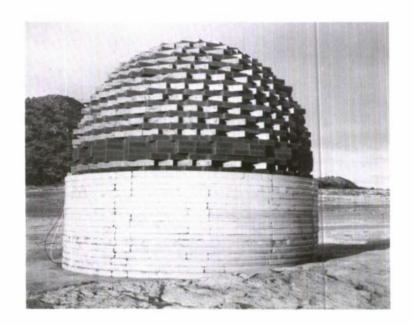




Figure 2.4. Surface joint map for Event Mineral Rock. Major and minor joints are indicated by heavy and light lines. Note numerous swirls in rock, as discussed in Section 2.1.

a. Elevation view of charge;HOB = 0.9 charge radius.

b. Stacked charge with styrofoam base.

Figure 2.5 Shot geometry for Event Mineral Rock, a 100-ton TNT detonation.

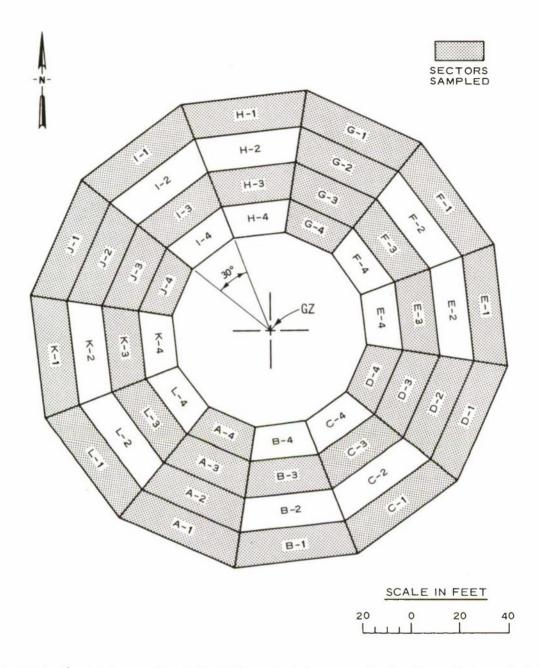


Figure 2.6 Sectors for collecting continuous ejecta in and immediately adjacent to the crater lip, Event Mineral Rock.

Figure 2.7 Sieving of ejecta from the Mineral Rock crater lip at a rock-crushing plant (Western Rock Products Corp., Cedar City, Utah).

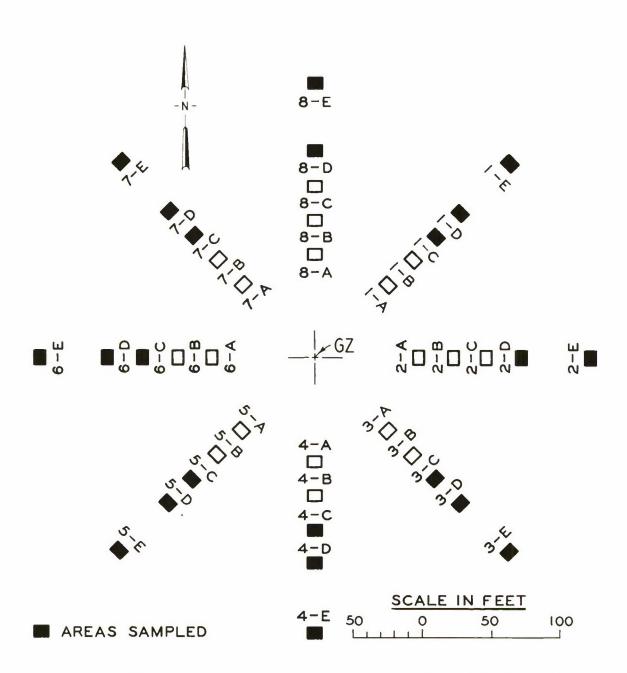


Figure 2.8 Array of ejecta collector areas, Event Mineral Rock.

Figure 2.9 Mineral Rock charge and ejecta collector areas.

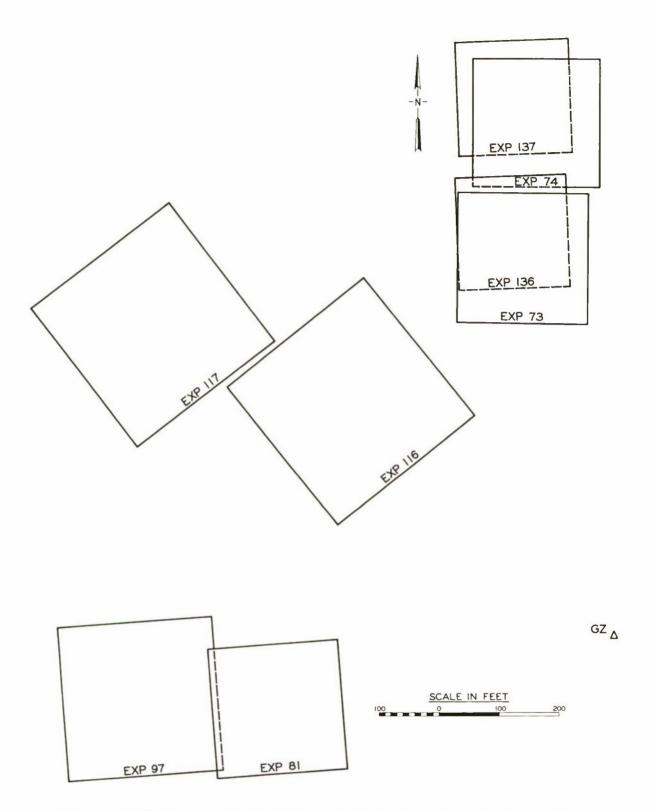


Figure 2.10 Areas selected for aerial photography ejecta count, by photograph exposure number.

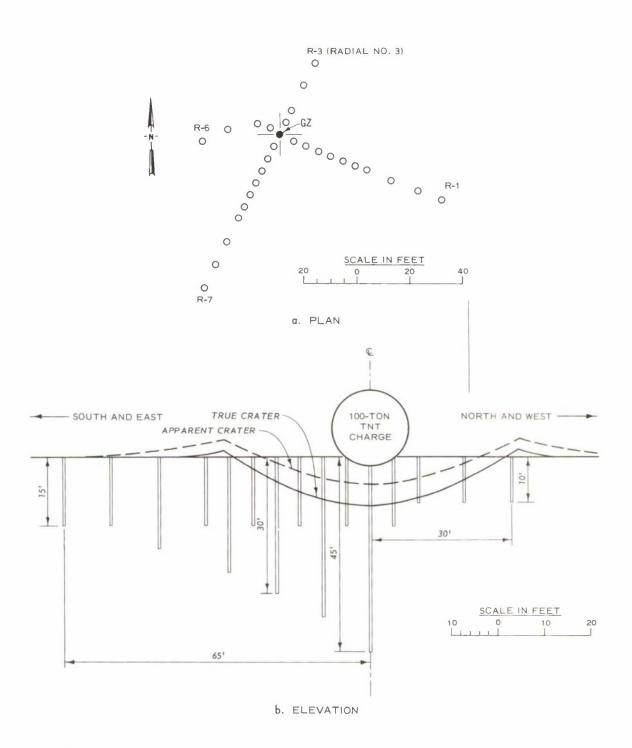


Figure 2.11 Bead- and color-coded grout columns of Subtask 30110.

ALUMINUM CYLINDER PACKAGE PACKAGE OF SPHERES 7.4-INCH ALUMINUM SPHERE FEET FEET 0 0 0 0 0 SCALE IN FEET 10 FEET LEGEND NX-SIZE HOLE, 8-FOOT DEPTH NX-SIZE HOLE, 4-FOOT DEPTH 7.75-INCH-DIAMETER BOREHOLE, 4-FOOT DEPTH SCALE IN FEET

a. Locations of artificial missile boreholes.

b. Positions of artificial missiles in boreholes.

LEGEND

Figure 2.12 Preshot locations and positions of the artificial missiles for Event Mineral Rock.

Figure 2.13 Artificial missiles (cylinder packages and sphere packages) prior to emplacement in NX-size boreholes.

CHAPTER 3

RESULTS

3.1 EJECTA DISTRIBUTION AND AREAL DENSITY

Figure 3.1 is an aerial photograph of the apparent crater and adjacent debris field for Event Mineral Rock. A more extensive ejecta field was obtained from Mineral Rock than from its predecessor, Mine Ore. However, as with Mine Ore, the ejecta distribution for Mineral Rock was distinctly rayed, with the principal rays running to the northwest and southeast. For the Mineral Rock Event, ejecta between the rays was less dense and was randomly distributed. Rock jointing again appeared to be the controlling factor in ejecta distribution, with topographical and vegetal features of the test site having only a slight effect. Wind and other weather factors apparently had no significant effect on the ejecta pattern.

Of interest in this test were the number of large missiles thrown for considerable distances. Several missiles weighing 100 pounds or more were hurled over 1,000 feet from GZ. Figure 3.2 shows a 400- "
pound fragment of a larger missile that was thrown about 1,200 feet northeast of GZ. Another missile landed about 200 feet east of GZ and broke in two, with the larger piece traveling another 100 feet. The larger piece weighed an estimated 10 to 12 tons, while the weight of the original missile was estimated at 18 tons. The two pieces are circled in Figure 3.1.

The maximum range for a natural missile was approximately 2,800 feet. This missile was a 1-pound fragment found north-northeast of GZ on a radial roughly parallel to the main jointing of the rock in the area covered by the peripheral plane-table survey. Maximum natural missile range south of GZ in the restricted Air Force area was estimated at 2,400 feet.

3.1.1 Within the Crater Lip. Table 3.1 gives the distribution and areal density of the ejecta collected from the crater lip and the area immediately adjacent. The lip itself was generally asymmetrical,

averaging 64 feet in its extremity, but with radii extending in some directions to 110 feet from GZ (Reference 12). The mass of lip material was unevenly distributed, with the heaviest depositions to the west, northeast, and southeast. Total ejecta mass in the crater lip was approximately 4×10^5 pounds.

3.1.2 Beyond the Crater Lip. Table 3.2 presents the distribution and areal density of the ejecta recovered from the ejecta collector areas that covered the transition zone along the periphery of the crater lip where deposition was heavy but not continuous. As in the lip, the ejecta distribution in the transition zone was asymmetrical, with the areas of heaviest distribution coinciding with those of the lip. The beginnings of the ejecta rays are also reflected in the collector area data. Table 3.3 presents the results of a sieve analysis performed on the small ejecta particles, i.e., those less than 6 inches in nominal diameter. These results are also shown graphically in Figure 3.3.

Results of the particle count and size classification performed on the discontinuous ejecta field by means of aerial photography are tabulated in Appendix A. Eight exposures were processed (see Figure 2.10), covering an area of 384,000 ft², in which 2,452 rock particles were located and classified into five size categorics. Table 3.4 presents the ejecta areal densities as functions of range, as determined from the aerial photographs. Details of the computational techniques for obtaining these values are presented in Section 4.1.

Finally, the plane-table survey of missiles falling along the periphery of the debris field indicated a maximum ejecta range of roughly 2,800 feet. Maps of the portion of the periphery that was surveyed (slightly less than half of the ejecta field circumference) are presented in Figure 3.4. The missiles examined fell beyond 2,000 feet from GZ and ranged in weight from an arbitrarily selected lower limit of 1 pound to 100 pounds for a piece of grout. The largest natural missile found on the periphery weighed 40 pounds. To facilitate control, plane-table stations were established by highway-curve traverse on a 2,000-foot radius. Interstation distance (chord length)

was 522 feet. Vegetation and terrain necessitated the establishment of additional stations during the course of the survey.

3.2 MISSILE TRAJECTORY EXPERIMENTS

Results of the three experiments designed to obtain information on the ballistic trajectories of ejecta missiles are presented below. Two of these experiments also provided information on the mechanics of crater formation by defining the origin of ejecta as a function of distance from the charge.

- 3.2.1 Colored-Grout Ejecta. Table 3.5 gives the postshot positions of particles recovered from the colored-grout columns as determined during the conduct of Subtask SX30110. Ejected grout was located as far as 1,450 feet to the east of GZ, 1,350 feet to the north, 540 feet to the west, and 1,300 feet to the south. Except for particles found in the fallback, the angular deviation of ejecta about radial lines extending from GZ through the grout columns was 10 degrees or less for all radials except Radial 6. The slightly greater spread on this radial was caused by the original nonlinear array of grout columns (see Figure 2.11). Identification of each piece of ejected grout by means of grout and bead colors permitted determination of its origin.
- 3.2.2 Artificial Missiles. A postshot plane-table survey was conducted to locate and map the artificial missiles that had been emplaced in the crater region. Table 3.6 lists the preshot and postshot positions of all WES missiles recovered in the search. Of the 1,925 missiles (both cylinders and spheres) originally emplaced, 547 (28.4 percent) were recovered, identified, and mapped during the survey. Four plane-table maps were drawn. The individual maps, shown in Figures 3.5 through 3.8, cover the crater area and the north, south, and west radials, respectively. Maximum artificial missile ranges were 2,165 feet to the west and 2,150 feet to the north, both for 4-inch-diameter cylinders. The search to the south was restricted to a distance of 900 feet because of the Air Force test area previously mentioned. Subsequent investigation of the true crater indicated that another 25 percent of the missiles were either buried in the fallback

or had never been ejected. The number of missiles recovered, however, provided a sufficient sample to give a clear picture of ballistic ejecta origin versus range.

In recovering the artificial missiles, it was discovered that several groups of spheres and cylinders were still embedded in large blocks of ejected rock, as shown in Figure 3.9. Most such blocks were found in or near the edge of the crater lip, but one was found almost 960 feet north of GZ.

Nineteen of the twenty-three 7.4-inch-diameter aluminum spheres were recovered postshot, 18 of which were identifiable. Their ejected ranges are given in Table 3.7. Maximum range was 984 feet. Final positions can be seen in Figures 3.5 and 3.6. The unrecovered spheres, all from the hole nearest the charge, were believed to have been buried in the fallback.

3.2.3 Styrofoam Missile Traps. Only four small missiles were recovered in the styrofoam missile traps. Several of the close-in traps were blown away in the blast, and others were destroyed when struck by large rocks. Following the field work, tests were conducted in the WES Fragment Simulation Facility, and computer calculations were made to determine impact velocities of the recovered rock fragments. Angles of penetration and calculated striking velocities of the missiles are listed in Table 3.8.

By Dr. B. Rohani, using a time-sharing program developed within the Soil Dynamics Branch, Soils and Pavements Laboratory, WES.

TABLE 3.1 DISTRIBUTION AND AREAL DENSITY OF EJECTA WITHIN AND ADJACENT TO THE CRATER LIP

Note: The average lip extremity included Sectors -3 and -4.

Radial	Sector	Weight	of Ejecta of	Indicated	Sizes	Total Weight	Areal Density
		>12 inches	>6 to 12 inches	>3 to 6 inches	≤3 inches	of Ejecta	Density
		pounds	pounds	pounds	pounds	pounds	lb/ft ²
А	1 2 3 4	6,230 1,200 3,350 850	1,800 1,800 4,550 1,600	1,200 1,000 2,000 850	1,300 1,100 1,100 500	10,530 5,100 11,000 3,800	15.20 8.75 23.40 10.64
В	1 3	2,690 44,710	5,100 9,010	2,400 4,870	1,600 6,410	11,790 65,000	17.00 138.00
C	1 3	6,140 13,130	3,350 2,850	1,850 1,750	2,750 1,900	14,090 19,630	20.20
D	1 2 3 կа	1,100 2,010 10,590	1,450 1,800 5,000	1,120 960 2,400	1,500 450 2,400	5,170 5,220 20,390 17,080	7.44 8.95 43.40 47.80
E	1 3ª	2,625	2,900	1,400	1,750	8,675 40,840	12.50 87.00
F	3	2,475 2,947	3,400 4,150	2,750 2,100	9,250 3,700	17,875 12,897	25.70 27.40
G	1 2 3 4	210 650 1,740 9,080	1,000 1,500 2,500 2,050	1,450 1,150 1,300 1,200	2,700 2,750 1,700 1,200	5,360 6,050 7,240 13,530	7.71 10.40 15.40 38.00
H	1 3	1,450	2,000	1,300 2,600	2,500 4,550	7,250 16,250	10.40
I	3	680 28,550	1,250 3,100	950 1,900	1,970 4,500	4,850 38,050	6.98 81.00
J	1 2 3 4a	3,400 2,850 2,885	2,600 3,500 1,950	1,400 1,700 1,200	1,800 1,700 1,000	9,200 9,750 7,035 9,140	13.20 16.70 15.00 25.60
K	1 3	7,560 3,400	2,800 4,600	3,400 2,000	5,100 1,050	18,860 11,050	27.10 23.50
L	1 3	2,900 1,580	3,810 2,550	2,250 1,900	2,980 2,500	11,940 8,530	17.20 18.10

^a Sector consisted mostly of material too large for sieving.

TABLE 3.2 DISTRIBUTION AND AREAL DENSITY OF EJECTA FROM COLLECTOR AREAS
No data are given for material from A and B rings, as this material was collected along with that listed in Table 3.1.

Area No.	Distance from GZ	Weight of	f Ejecta of 1	Indicated	Total Weight of Ejecta	Areal Density
		>12 inches	6 to 12 inches	<6 ^a inches		
	feet	pounds	pounds	pounds	pounds	lb/ft ²
1-A 1-B 1-C 1-D 1-E	75 100 125 150 200	142.00	67.50 25.00 23.75	79.99 43.62 47.12	147.49 68.62 212.87	1.47 0.69 2.13
2-A 2-B 2-C 2-D 2-E	75 100 125 150 200	76.25 149.00	135.50 153.25	406.47 50.62	618.22 352.87	6.18 3.53
3-A 3-B 3-C 3-D 3-E	75 100 125 150 200	244.75 123.50	242.75 196.25 247.00	343.35 186.11 268.36	830.85 505.86 515.36	8.31 5.06 5.15
4-A 4-B 4-C 4-D 4-E	75 100 125 150 200	 	161.00 290.75 62.75	306.23 189.24 79.37	 467.23 479.99 142.12	4.67 4.80 1.42
5-A 5-B 5-C 5-D 5-E	75 100 125 150 200	131.50	34.75 39.75 79.75	87.74 99.49 32.75	253.99 139.24 112.50	2.54 1.39 1.13
6-A 6-B 6-C 6-D 6-E	75 100 125 150 200	972.00 97.25 166.50	963.25 301.50 43.28	514.08 311.60 78.49	2,449.33 710.35 288.27	24.49 7.10 2.88
7-A 7-B 7-C 7-D 7-E	75 100 125 150 200	135.50	89.62 44.50	59.87 61.12 126.99	 149.49 196.62 171.49	1.49 1.97 1.71
8-A 8-B 8-C 8-D 8-E	75 100 125 150 200	95.00	 65.75	35.87 72.62	130.87 138.37	1.38

^a For further sieve analysis of material in this size class, see Table 3.3.

TABLE 3.3 RESULTS OF SIEVE ANALYSIS OF SMALL MATERIAL FROM COLLECTOR AREAS

No.	Area					We	ight and	Percenta	ge Retair	ed on In	Weight and Percentage Retained on Indicated Sieve Sizes	ieve Siz	6.5					Total
pounds percent jounds of the pounds percent location for the pounds percent pounds percent pounds percent per	No.	5 in	ches	1 1	iches	3 in	ches		ches		nch	1/2	inch	No		1	an	Weight of Sample
12.10 2.1.8 2.1.9 2.1.9 2.2.1 2.2.2 2.2.2 2.2.3 2.2.3 2.4.0 0.44 0.66 0.12 0.22 0.25		pounds	percent		percent	spunod	percent	spunod	percent	pounds	percent	spunod	percent	pounds	percent	pounds	percent	pounds
12.10 2.18 2.198 39.5 10.37 18.7 7.03 12.6 3.58 6.4 0.55 0.4 0.08 0.1 0.2 -	125	feet from	m GZ:															
	1-0	12.10	21.8	21.98	39.5	10.37	18.7	7.03	12.6	3.58	4.9	0.25	4.0	0.08	0.1	0.21	4.0	25.60
1. 1. 1. 1. 1. 1. 1. 1.	3-C	1	1	1	1	15.23	22.4	35.50	52.3	16.31	24.0	44.0	9.0	0.12	0.5	0.26	4.0	98.19
13.28 22.8 10.28 17.6 15.14 25.4 15.83 32.5 19.75 38.1 1.50 2.9 0.27 0.55 0.29 -	14-C	ł	1	2.49	7.5	8.66	7.41	14.68	24.9	32.43	6.45	0.48	0.8	0.15	0.2	0.16	0.3	50.65
13.28 22.8 10.28 17.6 16.61 28.5 12.74 21.5 14.74 81.1 0.4 0.4 0.65 0.9 0.2 0.2 1 1.24 20.7 16.83 67.9 2.55 10.3 0.11 0.4 0.04 0.05 0.2 0.10 1.24 1.24 1.25 1.2 20.7 16.83 67.9 2.55 10.3 0.11 0.4 0.05 0.2 0.2 0.10 1.24 1.24 1.25 1.24 1.25 1.25 10.3 0.11 0.4 0.05 0.2 0.2 0.10 1.24 1.25 1.24 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25	5-C	!	1	1	1	13.17	25.4	16.83	32.5	19.75	38.1	1.50	5.9	0.27	0.5	0.29	9.0	51.81
Feet from GZi	2-9	13.28	22.8	10.28	17.6	16.61	28.5	12.54	21.5	72.4	8.1	0.13	0.2	0.55	6.0	0.21	4.0	58.34
Feet from GZ:	7-C	1	+	1	1	5.12	20.7	16.83	6.79	2.55	10.3	0.11	4.0	90.0	0.2	0.10	0.4	24.77
	150	feet from	m GZ:															
	1-D	1	1	1	1	11.24	9.92	12.74	30.2	15.47	36.6	2.25	5.3	0.17	7.0	0.42	6.0	42.26
	2-D	1	1	3.21	5.1	11.76	18.6	30.77	148.7	16.62	26.3	0.32	6.0	0.24	7.0	0.27	4.0	63.19
5.19 8.0 3.73 5.7 12.43 19.1 27.18 41.7 15.28 23.4 0.87 1.4 0.25 0.4 0.25 0.9 0.3 0.2 0.3 4.41 7.2 20.37 33.1 14.56 23.6 21.08 34.2 0.55 0.9 0.33 0.5 0.33 15.78 28.0 18.78 33.3 14.17 25.1 7.08 12.5 0.9 0.39 0.2 0.14 5.33 9.0 17.89 30.3 21.75 36.7 13.74 23.2 0.19 0.35 0.07 0.19 0.24 0.14 eet from 7.35 21.4 5.13 14.9 30.4 1.15 33.3 0.14 31.4 33.7 14.25 31.5 22.0 0.39 0.24 0.23 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.2	3-D	!	1	2.80	4.3	14.26	21.7	25.32	38.6	21.63	33.0	1.10	1.7	0.23	0.3	0.29	7.0	65.63
1, 1, 1 7.2 20.37 33.1 14.56 23.6 21.08 34.2 0.55 0.9 0.33 0.5 0.5 0.23 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	η-D	5.19	8.0	3.73	5.7	12.43	19.1	27.18	41.7	15.28	23.4	0.87	1.4	0.25	4.0	0.20	0.3	65.13
15.78 28.0 18.78 33.3 14.17 25.1 7.08 12.5 0.35 0.6 0.09 0.2 0.14 5.33 9.0 17.89 30.3 21.75 36.7 13.74 23.2 0.19 0.3 0.07 0.1 0.23 set from G2: 12.35 19.0 17.89 30.3 21.75 36.7 13.74 23.2 0.19 0.3 0.07 0.1 0.23 12.35 19.0 14.7 15.1 3.1 25.24 51.6 14.25 29.1 0.26 0.5 0.13 0.2 0.37 12.35 19.0 21.88 34.4 18.26 28.7 10.37 16.3 0.42 0.7 0.12 0.2 0.37 10.17 32.4 3.27 10.4 11.15 35.5 5.94 18.9 0.54 1.8 0.06 0.2 0.24 4.39 10.3 6.71 15.8 19.64 16.1 11.03 25.9 0.54 1.8 0.08 0.2 0.24 7.27 13.1 22.27 37.4 28.09 47.2 0.98 1.7 0.15 0.18 0.25 7.27 19.7 13.1 22.27 37.4 28.09 25.3 0.50 1.8 0.21 0.08 0.2 0.22 7.27 19.7 13.1 22.27 37.4 28.09 25.3 0.50 1.8 0.21 0.8 0.21 7.27 19.7 13.1 22.27 37.4 28.09 26.3 0.50 1.8 0.21 0.8 0.21	5-D	1	1	4.41	7.2	20.37	33.1	14.56	23.6	21.08	34.2	0.55	6.0	0.33	0.5	0.33	0.5	61.63
5.33 9.0 17.89 30.3 21.75 36.7 13.74 23.2 0.19 0.3 0.07 0.1 0.23 9.62 28.0 7.35 21.4 5.13 14.9 10.46 30.4 1.15 3.3 0.7 0.15 3.2 0.46 30.4 1.15 3.3 0.42 0.7 0.13 0.24 0.5	Q-9	1	1	15.78	28.0	18.78	33.3	14.17	25.1	7.08	12.5	0.35	9.0	60.0	0.2	0.14	0.3	56.39
9.62 28.0 7.35 21.4 5.13 14.9 10.46 30.4 1.15 3.3 0.18 0.5 0.53 set from GZ: 16.70 37.6 14.02 31.5 12.00 27.0 0.83 1.9 0.24 0.5 0.67 12.35 19.0 21.88 34.4 18.26 28.7 10.37 16.3 0.42 0.7 0.12 0.2 0.22 10.17 32.4 3.27 10.4 11.15 35.5 5.94 18.9 0.54 1.8 0.06 0.2 0.24 4.39 10.3 6.71 15.8 19.64 46.1 11.03 25.9 0.62 1.5 0.08 0.2 0.12 5.27 19.7 13.1 22.27 37.4 28.09 47.2 0.98 1.7 0.15 0.2 0.22 5.27 19.7 13.1 22.27 37.4 28.09 1.7 0.98 0.51 0.8 0.51 0.8 0.2	7-D	1	1	5.33	0.6	17.89	30.3	21.75	36.7	13.74	23.2	0.19	0.3	0.07	0.1	0.23	7.0	59.20
eet from GZ: -	8-D	9.65	28.0	ŀ	1	7.35	21.4	5.13	14.9	10.46	30.4	1.15	3.3	0.18	0.5	0.53	1.5	34.42
<	500	feet from	m GZ:															
7.20 14.7 1.51 3.1 25.24 51.6 14.25 29.1 0.26 0.5 0.13 0.2 0.37 12.35 19.0 21.88 34.4 18.26 28.7 10.37 16.3 0.42 0.7 0.12 0.2 0.22 4.21 6.8 17.48 28.1 24.59 39.5 14.45 23.2 0.91 1.5 0.18 0.3 0.22 0.28	1-E	;	1	!	1	16.70	37.6	14.02	31.5	12.00	27.0	0.83	1.9	0.24	0.5	19.0	1.5	94.44
12.35 19.0 21.88 34.4 18.26 28.7 10.37 16.3 0.42 0.7 0.12 0.2 0.22 10.21 6.8 17.48 28.1 24.59 39.5 14.45 23.2 0.91 1.5 0.18 0.3 0.39 10.17 32.4 3.27 10.4 11.15 35.5 5.94 18.9 0.54 1.8 0.06 0.2 0.24 4.39 10.3 6.71 15.8 19.64 46.1 11.03 25.9 0.62 1.5 0.08 0.2 0.12 7.77 13.1 22.27 37.4 28.09 47.2 0.98 1.7 0.15 0.2 0.22 5.27 19.7 1.42 5.3 11.67 43.5 7.05 26.3 0.50 1.8 0.21 0.8 0.71	2-E		1	7.20	14.7	1.51	3.1	25.24	91.6	14.25	29.1	98.0	0.5	0.13	0.2	0.37	0.8	78.96
4,21 6.8 17,48 28.1 24.59 39.5 14,45 23.2 0.91 1.5 0.18 0.3 0.39 10.17 32.4 3.27 10.4 11.15 35.5 5.94 18.9 0.54 1.8 0.06 0.2 0.24 4,39 10.3 6.71 15.8 19.64 46.1 11.03 25.9 0.62 1.5 0.08 0.2 0.12 7,77 13.1 22.27 37.4 28.09 47.2 0.98 1.7 0.15 0.2 0.22 5,27 19.7 1.42 5.3 11.67 43.5 7.05 26.3 0.50 1.8 0.21 0.8 0.71	3-E		1	12.35	19.0	21.88	34.4	18.26	28.7	10.37	16.3	0.45	2.0	0.12	0.2	0.22	0.3	63.62
10.17 32.4 3.27 10.4 11.15 35.5 5.94 18.9 0.54 1.8 0.06 0.2 0.24 4.39 10.3 6.71 15.8 19.64 46.1 11.03 25.9 0.62 1.5 0.08 0.2 0.12 7.77 13.1 22.27 37.4 28.09 47.2 0.98 1.7 0.15 0.2 0.22 5.27 19.7 1.42 5.3 11.67 43.5 7.05 26.3 0.50 1.8 0.21 0.8 0.71	1-1		1	4.21	6.8	17.48	28.1	24.59	39.5	14.45	23.2	0.91	1.5	0.18	0.3	0.39	9.0	62.21
4.39 10.3 6.71 15.8 19.64 46.1 11.03 25.9 0.62 1.5 0.08 0.2 0.12 7.77 13.1 22.27 37.4 28.09 47.2 0.98 1.7 0.15 0.2 0.22 5.27 19.7 1.42 5.3 11.67 43.5 7.05 26.3 0.50 1.8 0.21 0.8 0.71	□		1	10.17	32.4	3.27	10.4	11.15	35.5	5.94	18.9	45.0	1.8	90.0	0.2	0.24	0.8	31.37
7.77 13.1 22.27 37.4 28.09 47.2 0.98 1.7 0.15 0.2 0.22 5.27 19.7 1.42 5.3 11.67 43.5 7.05 26.3 0.50 1.8 0.21 0.8 0.71	∃ -9	1	1	4.39	10.3	6.71	15.8	19.67	46.1	11.03	25.9	0.62	1.5	0.08	0.2	0.12	0.3	42.59
5.27 19.7 1.42 5.3 11.67 43.5 7.05 26.3 0.50 1.8 0.21 0.8 0.71	7-E	1	+	1	1	7.77	13.1	22.27	37.4	28.09	47.2	0.98	1.7	0.15	0.2	0.22	4.0	59.48
	8-E	1	1	5.27	19.7	1.42	5.3	11.67	43.5	7.05	26.3	0.50	1.8	0.21	0.8	0.71	5.6	26.83

TABLE 3.4 EJECTA AREAL DENSITIES FROM AERIAL PHOTOGRAPHY

Azimuthal Bounds [®]	Radial Distance ^b	Ejecta Areal Density	Azimuthal Bounds	Radial Distance	Ejecta Areal Density	Azimuthal Bounds	Radial Distance	Ejecta Areal Density	Azimuthal Bounds	Radial Distance	Ejecta Areal Density
degrees	feet	lb/ft ²	degrees	feet	1b/st ²	degrees	feet	lb/ft ²	degrees	feet	1b/ft ²
249-251	488 513 538 563 588 613	0.0083 0.0957 0.0151 0.0510 0.0069 0.0266	261-263 (Continued	713 738 763 788 813 838	0.0346 0.0166 0.0213 0.0210 0.0200 0.0097	303-305	813 838 863 888 913 938	0.0050 0.0440 0.0522 0.0736 0.0713 0.0694	311-313 (Continued)	688 713	0.0000 0.0000 0.1235 0.1667 0.0000
251-253	638 488	0.0000		863 888	0.0142		963 988 1,013	0.0763 0.1440 0.0846	313-315	463 488 513	0.0176
	513 538 563 588 613 638	0.0962 0.0690 0.0289 0.0277 0.0738 0.0128	263-265	488 513 538 563 588 613 638	0.8966 0.4217 0.3419 0.0579 0.1462 0.1458 0.1543	305-307	463 488 513 538 563 588	0.1486 0.0083 0.0079 0.0076 0.0072 0.0069		538 563 588 613 638 663 688	0.0076 0.0072 0.0952 0.0399 0.0833 0.1423 0.0237
2 53 - 255	488 513 538 563 588 613 638	0.0339 0.1182 0.0151 0.0438 0.0489 0.0734 0.0383		713 738 763 788 813 838 863 888	0.0114 0.0389 0.0053 0.0050 0.0050 0.0097 0.0094 0.0046		613 638 663 688 713 813 838	0.0133 0.0645 0.0123 0.0059 0.0000 0.0050 0.0197 0.0283	315-317	713 463 488 513 538 563 588	0.0000 0.0088 0.0668 0.0944 0.0151 0.0000 0.0346
255-257	488 513 538 563 588 613	0.2666 0.0798 0.0530 0.0948 0.0139 0.0066	265-267	488 513 538 563 588	0.3436 0.1998 0.6726 0.2154 0.0693		888 913 938 963 988 1,013	0.0413 0.0448 0.0260 0.0423 0.1202 0.0806		613 638 663 688 713	0.0399 0.0961 0.0925 0.0950 0.0000
	638 713 738 763 788 813 838 863 863	0.0383 0.0000 0.0055 0.0000 0.0052 0.0000 0.0000 0.0047 0.0046		613 638 713 738 763 788 813 838 863 888	0.0801 0.0897 0.0228 0.0500 0.0213 0.0052 0.0050 0.0343 0.0094 0.0637	307-309	463 488 513 538 563 588 613 638 663	0.0352 0.0167 0.0000 0.0000 0.0000 0.1543 0.1347	317-319	463 488 513 538 563 568 613 638 668	0.0000 0.0000 0.0000 0.0000 0.0145 0.0277 0.0399 0.1021 0.0491
257-259	488 513 538 563 588 613 638 713 738	0.2258 0.5793 0.1443 0.1378 0.0485 0.1794 0.1092 0.0114 0.0389	267-269	713 738 763 788 813 838 863 888	0.03146 0.0000 0.0107 0.0052 0.0100 0.0000 0.0655 0.0046		688 713 813 838 863 868 913 938	0.0536 0.0000 0.0253 0.0049 0.1549 0.0415 0.0451 0.0217 0.5100	319-321	713 403 488 513 538 503 588 613	0.0000 0.0088 0.0339 0.0079 0.0151 0.0072 0.0059
	763 788 813 838 863 888	0.0213 0.0626 0.0454 0.0049 0.0427 0.0275	269-271	713 738 763 788 813 838	0.0057 0.0000 0.0000 0.0052 0.0000 0.0049	309-311	988 1,013 463 488 513 539	0.0288 0.0482 0.0264 0.0167 0.0079 0.0000	321-323	638 663 688 713 463	0.0833 0.0061 0.0059 0.0000
259-261	488 513 538 563 588 613 638 713	0.5518 0.3352 0.2208 0.2038 0.0554 0.0066 0.1142	299-301	863 888 813 838 863 888 913	0.0000 0.0000 0.0050 0.0246 0.1357 0.0509 0.0089		563 588 513 638 663 688 713	0.0000 0.0000 0.1004 0.1543 0.0740 0.0414 0.0000 0.0203		513 538 563 588 613 638 663 668	0.0159 0.0076 0.0072 0.0069 0.0000 0.0255 0.0061
	738 763 788 813 838 863	0.0055 0.0320 0.0465 0.0150 0.0146 0.0236	301-303	938 963 988 1,013	0.0393 0.0552 0.0330 0.0685		838 863 888 913 938 963	0.0194 0.0427 0.0229 0.0089 0.0130 0.0000	323-325	713 463 488 513 538	0.0000 0.0890 0.0000 0.0076
261-263	888 488 513 538 563 588 613 638	0.0553 0.9137 0.7265 0.5692 0.3307 0.3867 0.1137		838 863 888 913 938 963 963 988	0.0194 0.0330 0.0413 0.0315 0.0174 0.0296 0.0371 0.1569	311-313	988 1,013 463 488 513 538 563 588	0.0124 0.1289 0.0264 0.0923 0.0723 0.0000 0.0072 0.0281		563 588 613 638 663 688 713	0.0000 0.0069 0.0133 0.2113 0.0556 0.0776 0.0000

 $^{^{\}mbox{\scriptsize A}}$ Azimuths are relative to true north.

b Radial distances are relative to centers of sampled areas.

TABLE 3.5 COLORED-GROUT EJECTA/FALLBACK RECOVERY DATA
Data were taken from Reference 12.

Radial	Grout	Distance	e from GZ	Preshot	Radial	Grout	Distance	e from GZ	Preshot
	Deviation Anglea	Preshot	Postshot	Depth		Deviation Angle	Preshot	Postshot	Depth
	degrees	feet	feet	feet		degrees	feet	feet	feet
1	0 0 30S	10 10 10	11 14 15	5	l (Continued	0 0	25 25 25	340 350 350	3 4 3
	0	15 15	18	3 8 7		0	10	350 400	3 3 4
	0 0	20 20 20	30 31 31	6 6 5		0 0	15 15 15	450 485 490	4 3 4 6
	0	30 30	33 36	4		0	15 15	500 580	3
	0 0 58 88 58	5 10 30 25 30	38 63 64 67 68	4 6 2 5 3		0 5n 6n 3n 3n	15 20 10 20 20	600 650 680 700 750	3 1 2 2
	5N 9S 8S 3S 6S	10 20 30 30 20	70 72 75 90 95	6 3 1 2		0 1S 0 0 3N	15 10 15 15 20	800 1,000 1,000 1,000	5 1 2 5
	5N 4s 6s 3N 3N	30 20 10 30 25	100 105 105 110 110	1 6 4 1		1S 0 0 0 0 3S	10 20 20 20 10	1,050 1,085 1,100 1,100	4 1 2 2 1
	4N 4S 4S 0 6S	25 20 20 30 10	110 115 125 127 127	5 5 1 4		0	20 20 20 20 20	1,120 1,125 1,125 1,125 1,125	2 1 1 3
	48 58 38 58 0	20 20 30 20 20	130 130 140 145 150	4 1 4 5		5N 5N 5S 3N 0	20 20 15 15	1,150 1,300 1,450 1,450 1,450	1 2 2 2
	0 2s 4n 0 0	30 25 10 20 25	150 150 160 175 180	1 5 4 4 5	3	15E 15E 0 0	0 0 20 30 30	10 13 25 40 45	4 5 7 1
	0 0 4s 4s 3s	25 20 20 20 20	200 200 300 300 300	5 3 4 4		0 1W 1W	20 20 20 20 20	240 250 260 265 265	6 7 6 7
	1S 7S 10N 3S 3S	20 20 20 20 20	305 310 320 320 320	4 1 2 4 3		2W 0 5W 1W 2W	0 0 0 20 20	270 330 380 550 600	6 6 4 5
	4N 3N O O 4N	25 10 20 25 25	320 325 330 330 330	5 4 4 3 4	tinued)	1W 0 2W 0 2W	20 20 20 20 20	600 640 660 660 670	4 4 3 4 4

^a Angle of deviation of grout fragment location is relative to a line extending from GZ through the grout column location from which the fragment originated. North, east, west, and south are shown by appropriate abbreviations.

TABLE 3.5 (CONCLUDED)

Radial	Grout	Distance	e from GZ	Preshot	Radial	Grout	Distance	e from GZ	Preshot
	Deviation Angle	Preshot	Postshot	Depth		Deviation Angle	Preshot	Postshot	Depth
	degrees	feet	feet	feet		degrees	feet	feet	feet
3 (Continu	. 0 ued) 2W 0 2W 2W	20 20 20 20	685 690 700 700 700	2 3 4 3 3	(Continued	7E 5E 5E 5E 6E	5 25 25 30 5	48 50 50 50 72	5 5 3 1 6
	1₩ 5₩ 5₩ 3₩	20 20 20 20	790 800 810 840 850	1 2 3 2 2		4E 2E 2E 5E 3E	5 5 5 30 30	95 100 100 127 130	6 10 1 4 2
	JM 0 0 0	20 20 20 20	850 850 850 850 860	3 3 3 3 2		3E 5W 2W 3E	15 15 5 30 30	130 130 135 139 140	2 5 5 2 3
	0 4E 4E 4E 5E	20 20 20 20	950 1,130 1,140 1,150 1,350	2 1 1 2		0 0 3E 3W 0	30 15 5 30 5	140 145 150 154 250	2 4 5 2 7
6	14N 14N 14N 14N 14N	5 5 5 5 5 5	8 10 11 11	5 4 6 5 6		2W 2E 2W 2W	20 20 20 20 20 30	250 252 253 255 255	2 2 2 6
	14N 5N 5N 5N 5N	5 20 20 30 30	11 28 30 98 98	7 6 5 3 2		3W 3W 3W	20 25 25 30 20	260 265 275 280 285	2 2 4 1 3
	21S 5N 5S 2N 4N	10 30 30 30 30	102 103 125 135 170	1 3 2 1 1		2W 3W 2W 0	5 5 5 5	290 295 298 325 330	5 6 7 5
	4N 0 0 0 12S	30 10 10 10	185 220 230 290 325	1 7 6 7 4		5E 10E 2E 5W 3E	15 25 15 5 15	333 350 365 370 370	3 2 3 4 4
	12S 12S 3N 10S 9S	10 10 10 10	325 340 340 350 360	5 6 7 7 5		2E 10W 0 5E 2W	15 5 15 15 25	375 380 380 380 436	4 4 3 4 1
	3N 14S 3N 8S 12S	10 10 10 10	370 400 405 405 410	5 4 5 6 3		4E 10E 4E 8E 8E	15 15 15 15 15	460 550 580 700 750	4 3 2 2
7	1N 12S 0 10S	10 10 10 10	440 460 490 540	6 3 6 4		10E 4E 0 0 10E	15 20 15 10 20	780 794 830 830 900	2 2 1 1 1
(25E 15E 10E 3E 0	5 5 10 25 15	15 15 20 44 45	8 7 3 6 4 6		0 10E 3E 5E 10E 5E 5E	15 15 15 15 20 15	1,000 1,000 1,075 1,100 1,150 1,250 1,300	2 2 1 1 1

TABLE 3.6 WES ARTIFICIAL MISSILE DATA

Package No.	Missile Type ^a	Original	Position	Distance Ejected	Package No.	Missile Type	Original	Position	Distance Ejected	Package No.	Missile Type	Original	Position	Distanc
10.	Type	Diatance from GZ	Depth Below Surface	230000	,,,,,,	2370	Distance from GZ	Depth Below Surface	ngeesea	80,	1,100	Distance from GZ	Depth Below Surface	EJec oeu
		feet	feet	feet			feet	feet	feet			feet	feet	feet
South Re	dial (205	missiles):			South Ra	dial (205	missiles):	(Continu	ed)	South Ra	dial (205	missiles):	(Continu	ed)
112 112 113 113 113 114 114 114	C-1 C-2 C-4 C-1/2 C-2 S-2-S C-1/2 C-2 C-4 C-1/2	2.47	1.72 1.84 2.09 2.31 2.51 3.28 3.63 3.63 3.4.08 4.30	30 28 25 17 16 11 12 10	152 152 152 153 153 153 153 153 153 153 154	C-1 C-2 C-4 C-1/2 C-1 C-2 C-4 S-1-A S-1-P C-1/4	12.50	2.25 2.37 2.62 2.84 2.92 3.04 3.29 3.80 4.15	597 645 643 487 513 157 160 151 160	174 174 175 175 175 175 175 175 175	C-2 C-1/4 C-1/4 C-1/2 C-1 C-2 C-1/2 C-1/2	20.00	3.27 3.52 3.74 3.74 3.74 3.82 3.94 4.19	224 165 151 151 151 151 151 155 459
115 121 122 122 123 123 123 124 124 124 124 131 132 132 132 133 133 133	C-1/2 C-1/4 C-1/4 C-1/4 C-1/4 C-1/4 C-1/4 C-1/4 C-1/4 C-1/4 C-1/2 C-1 C-2 C-1 C-2 C-1/4 C-1/2 C-1 C-2 C-4 C-1/2 C-1 C-2 C-4 C-1/2 C-2 C-4 C-2 C-4 C-2 C-4 C-1/2 C-2 C-4 C-2 C-	7.47	1.75 1.29 1.84 2.36 2.61 2.84 3.29 3.81 4.16 4.16 4.36 2.02 2.37 2.37 2.37 2.36 3.81 3.81 3.81 3.81 3.81 3.81 3.81 3.81	24 18 20 20 20 18 17 21 14 15 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	154 154 155 155 155 156 156 156 156 161 161 162 162 162 163 163 163 163	C-1/2 C-1/4 C-1/2 C-1/2 C-1/2 C-1/2 C-1/2 C-4 S-2-S S-1-S C-1/8 S-1-A S-1-A C-1/4 C-1/2 C-1/2 C-1/2 C-1/2 C-1/2 C-1/2 C-1/2 C-1/4 C-1/2 C-2 C-1/4 C-1/2 C-2 C-1/4 C-1/5 C-1/4 C-1/5 C-1/5 C-2 C-1/4 C-1/5 C-1/5 C-2 C-1/4 C-1/5 C-1/	15.00	4.15 4.682 4.882 5.49 5.49 6.40 1.29 1.78 1.78 1.78 2.14 2.34 2.89 2.02 3.27	167 150 163 150 163 150 140 51 38 40 977 947 947 90 165 160 169 169 165 155	181 181 181 181 181 181 181 181 181 181	G-1 C-2 C-2 S-2-A S-2-L S-2-P S-2-P S-1-A S-1-L S-1-L S-1-P S-1-S C-1/4 C-1/2 C-1 C-2 C-4 C-1/4 C-1/2 C-1/2 C-1/2 C-1/2		0.70 0.82 1.07 1.63 1.63 1.63 1.63 1.63 1.63 2.03 2.11 2.23 2.11 2.23 2.48 2.70 3.35 3.35 3.35 3.35 3.35	447 498 355 367 335 213 395 248 365 382 365 257 257 256 258 247 165 104 117 96 61 47
133 134 134 135 135 135 135 136 136 136 137 141 142 142 142 142 143 143 143 144 144	C-1 C-2 C-4 C-1/4 C-1/2 C-1 C-2 C-4 C-1 C-2 C-2 S-2-S C-1/2 C-1 C-2 C-1/2 C-1 C-2 C-4 C-1 C-2 C-4 C-1 C-2 C-2 S-2-S C-1/2 C-1 C-2 C-1/2 C-1 C-2 C-2 C-1/2 C-1 C-2 C-2 C-2 C-2 C-2 C-2 C-2 C-1 C-2 C-2 C-2 C-1 C-2 C-2 C-1 C-2 C-2 C-1 C-2 C-1 C-2 C-1 C-2 C-1 C-2 C-1 C-1 C-2 C-1 C-1 C-1 C-1 C-1 C-1 C-1 C-1 C-1 C-1	10.00	4.15 4.19 5.00 5.37 5.67 5.67 5.67 5.67 5.67 5.68 6.88 6.96 6.88 6.96 2.94 3.25 3.37 3.62 2.94 3.37 3.62 4.15 4.72	139 139 134 133 120 130 130 122 124 118 82 29 65 65 973 926 63 636 636 636 636 636 636 636 636 1481 481 494 157	163 163 163 163 164 164 164 165 165 165 165 166 166 166 167 167 167 167 167 167 167	S-1-F S-2-F S-2-F S-1-A C-1/4 C-1/2 C-1 C-1 C-1/4 C-1/4 C-1/2 C-1 C-2 C-4 Il 1-inct Spheres C-1/4 C-1/		3.777 3.777 3.777 4.13 4.21 4.38 4.80 4.80 4.80 5.25 5.68 5.96 5.68 6.76 6.76 6.76 6.84 6.76 6.74 7.43	160 157 167 160 161 160 161 160 157 156 157 150 142 142 142 142 142 142 142 142	211 211 212 212 213 213 213 213 213 221 221	C-2 C-4 C-1 C-1 C-2 C-4 C-1/2 C-2 C-2 C-2 S-1-S S-1-S S-1-S S-1-A C-2 S-2-S C-2 C-1 C-1 C-2 C-1/2 C-2 C-2 C-2 C-2 C-2 C-2 C-2 C-	12.47 2.47 5.00	0.96 1.217 2.29 2.54 2.76 2.76 2.76 2.96 1.37 1.87 1.87 2.42 3.85 4.20 4.65 5.08 5.56 5.56	30 19 9 18 117 10 9 8 78 63 78 20 12 2 4 4 4 4 4 7 7 7 7 7
144 145 146 146 146 146 146 146 146 146 147 147 147 147 147	C-4 C-4 C-1/4 C-1/4 C-1 C-2 C-4 S-1-S S-2-A S-1-S S-1-A S-1-P C-1 C-2 C-4 C-1 C-2 C-4 C-1 C-2	12.50	4.97 5.68 5.88 5.98 6.08 6.33 6.81 6.81 6.81 6.81 7.24 7.61 8.51 8.51 8.93	163 64 76 78 58 80 65 85 78 78 78 96 54 30 19 629 920	168 168 171 171 171 172 172 172 172 173 173 173 173 173 173 174	C-1/2 C-1 C-1/4 C-4 S-2-8 S-1-8 C-1/2 C-1/2 C-1 C-2 C-1/4 C-1/4 C-1/2 C-1 C-2 C-1 C-1 C-1 C-1 C-1 C-1 C-1 C-1 C-1 C-1	20.00	7.43 7.51 0.44 0.99 1.41 1.72 1.80 1.92 2.17 2.39 2.39 2.47 2.58 3.15	142 78 618 975 523 340 240 256 244 263 264 262 262 266 215	226 231 231 232 233 233 233 233 234 234 235 235 236 236 236 236 236	C-1/2 C-1/2 C-1 C-4 C-2 C-2 C-4 S-2-A S-2-S C-1 C-2 C-1/2 C-1 C-2 C-1/2 C-1 C-2 C-1 C-2 S-2-S S-1-A	7.46	6.01 0.50 0.58 2.26 2.57 2.92 3.45 3.93 4.05 4.51 4.59 4.71 4.99 5.26 5.26 5.26 5.26 5.26 5.26 6.13 6.13	10 795 886 573 531 578 437 368 437 368 312 118 352 317 71 184 75 58 63 78

a Key to missile types: C-1/4 one-quarter wedge of 1-inch cylinder C-1/2 one-half wedge of 1-inch cylinder C-1 1-inch cylinder

C-2 2-inch cylinder C-4 4-inch cylinder S-1-A 1-inch aluminum sphere S-2-A 2-inch aluminum sphere S-1-L 1-inch lead sphere

S-2-L 2-inch lead sphere S-1-P 1-inch plastic sphere S-2-P 2-inch plastic sphere S-1-S 1-inch steel sphere S-2-S 2-inch steel sphere

⁴⁸

TABLE 3 6 (CONCLUDED

Package		Original	Position	Distance	Package	Missile	Original	Position		Package	Missile	Original	Position	Distance
No.	Туре	Distance from GZ	Depth Below Surface	Ejected	No.	Type	Distance from GZ	Depth Below Surface	Ejected	No.	Type	Distance from GZ	Depth Below Surface	Ejected
		feet	feet	feet			feet	feet	feet			feet	feet	feet
West Ra	dial (214 mi	issiles):	(Continue	ed)	West Rad	ial (214 m	dssiles):	(Continue	ed)	North Ra	dis1 (110	missiles):	(Continu	ued)
241 241 242 242 242 242	S-2-A S-1-A G-1/4 C-1/2 C-1 C-2	10.00	1.83 1.83 2.18 2.18 2.26 2.36	1,159 597 465 504 465 415	263 263 264 264 264 264	S-1-A S-2-S C-1/4 C-1/2 C-2 C-4	15.00	3.88 3.88 4.24 4.24 4.44	159 161 155 142 162 162	343 344 344 344 345	C-4 C-1 C-2 C-4 C-4	10.02	3.02 3.94 4.04 4.31 4.99	158 98 98 98 62 34
243 243 243 243 243 243 243 243 244 244	C-1/4 C-1/2 C-1 C-2 C-4 S-2-A S-1-S C-1/4 C		2.89 2.89 3.05 3.30 3.80 3.80 3.80 4.15 4.15 4.25 4.30 4.82 4.90 5.02 5.27 5.48	402 412 520 520 520 519 652 496 517 362 306 334 341 341 390 336 363 363 363 363 363 363	265 265 265 266 266 266 266 266 266 266	C-1/4 C-1/4 C-1/2 C-1/2 C-1/4 C-1/2 C-1 C-2 C-1 S-2-A S-2-S S-1-A C-1/4 C-1/4 C-1/4 C-1/4 C-1/2 C-1 C-2 C-2 C-1/4 C-1/2 C-1/2 C-1/4 C-1/2		4.91 4.91 5.58 5.58 5.58 6.53 6.53 6.53 6.53 6.53 8.24 8.24 8.49	164 164 168 171 163 188 181 74 75 38 59 35 42 35 17 17 17	351 351 351 351 351 352 352 352 353 353 353 353 353 356 356 356 356 356	C-1 C-h S-2-A S-2-S S-1-A C-1/2 C-1 C-2 C-2 C-2 C-2 C-2 C-2 C-2 C-2	12.48	1.54 1.91 2.41 2.41 2.76 2.84 2.96 3.21 3.43 3.63 4.39 5.80 6.52 7.00 7.00 7.00 7.00 7.00	392 529 472 436 360 331 316 356 284 52 22 22 15 14 10 10
246 246 246 246 246 246 246 247 247 247 247 247 247 248 248 248 249 249 249	C-1/4 C-1/2 C-1 C-2 C-1 S-2-A S-2-F S-2-S All small spheres (. C-1/4 C-1/2 C-1 C-2 C-4 C-1/2 C-1/4 C-1/2 C-1/2 C-1/4 C-1/2	12)	5.48 5.56 5.56 5.93 6.49 6.49 6.49 6.86 6.731 7.54 7.54 7.59 8.21 8.21 8.24	3249 406 399 171 171 171 171 171 177 115 116 82 80 0 13 12 12	271 272 272 272 272 272 273 273 273 273 274 274 274 275 275 275 275 275 281 281	S-2-S G-1/4 C-1/4 C-1/4 C-1/4 C-1/4 C-1/4 C-1/4 C-1/2 C-1 C-2 C-1/4 C-1/4 C-1/4 C-1/4 C-1/4 C-1/4 C-1/4 C-1/2 C-1 C-2 C-1/4 C-1/4 C-1/2 C-1/4 C-1/4 C-1/2 C-1/4 C-1/2 C-1/4 C-1/2 C-1/4 C-1/2 C-1/4 C-1/2 C-1/4 C-1/2 C-1/4 C-1/2 C-1/4 C-1/2 C-1/4 C-1/2 C-1/4 C-1/2 C-1/4 C-1/4 C-1/2 C-1/2 C-1	19.95 2h.98	1.36 1.72 1.72 1.72 1.80 2.17 2.40 2.40 2.48 3.10 3.30 3.76 3.76 3.76 3.76 3.84 3.90	932 461 420 540 456 286 183 179 136 172 139 93 93 93 93 93 93 93 93 93	361 361 362 362 362 363 363 363 363 363 363 365 365 365 366 366	C-1/2 C-1/ C-1/ C-1/ C-1/ C-1/ C-1/ C-1/ C-1/	15.02	0.49 0.94 1.87 1.87 2.55 2.55 2.55 2.63 3.54 4.66 5.03 5.26 5.26 5.26 5.26 5.26 5.26 5.26 5.26	2,070 2,150 956 137 118 123 155 130 135 144 146 145 122 21 14 14 14 14 14
249 250 251 252 252 252 253 253 253 253 254 254 254	C-4 C-1/2 C-2 C-1 C-2 C-4 C-1/4 C-1 C-2 S-2-A S-2-A S-2-S C-1/4 C-1 C-2 C-4	12.49	8.66 0.53 1.28 2.49 2.61 2.98 3.20 3.28 3.40 4.15 4.15 4.51 4.51 4.59 4.71 4.96	12 1,240 1,323 867 748 674 466 388 415 407 342 273 324 288 318 221	281 281 281 281 282 282 283 283 283 283 284 285 285 285 285 285	C-2 C-4 S-2-A S-2-S S-1-S C-1 C-2 C-4 C-1/2 C-1 C-2 C-4 C-2 C-1 C-2 C-1 C-2 C-1 C-2 C-1 C-2 C-1 C-2 C-1 C-2 C-1 C-1 C-2 C-1 C-1 C-2 C-1 C-1 C-1 C-2 C-1 C-1 C-1 C-1 C-2 C-1 C-1 C-1 C-1 C-1 C-1 C-2 C-1 C-1 C-1 C-1 C-1 C-2 C-1 C-1 C-1 C-2 C-1 C-1 C-2 C-1 C-1 C-1 C-2 C-1 C-1 C-2 C-1 C-1 C-2 C-1 C-1 C-2 C-1 C-1 C-2 C-1 C-1 C-1 C-2 C-1 C-1 C-1 C-1 C-1 C-1 C-1 C-1		1.45 1.704 2.24 2.61 2.83 3.30 3.30 3.375 4.456 4.86 4.86	368 285 180 151 178 145 142 110 120 119 116 107 107 107 134 93 93	366 366 371 371 371 371 372 372 372 372 372 373 373 373 373 374	S-2-S S-1-S C-1/2 C-2 C-1 S-2-S S-2-A S-1-A C-1/2 C-1 C-1 C-2 C-2 C-2 C-2 C-2 C-1/2 C-2 C-2 C-2 C-2 C-2 C-2 C-1/2	20.00	6.24 6.24 0.34 0.39 1.11 1.11 1.46 1.54 1.66 1.91 2.34 2.59 2.82	16 17 712 957 964 963 776 771 758 751 618 414 445 85
255, 255, 255, 255, 256, 256, 256, 256,	C-1/h C-1 C-1 C-2 C-4 C-1/2 C-1 C-2 S-2-A S-2-S S-1-S C-1 C-2 C-4 C-4 C-4 C-2 C-4 C-1 C-2 S-1-S S-1-S S-1-S S-1-S	15.00	5.18 5.28 5.38 5.85 5.85 5.85 6.05 6.78 6.78 6.78 6.78 6.78 2.64 2.69 2.64 3.07 3.88 3.88	231 172 219 228 221 204 182 225 84 93 60 21 2,165 1,281 1,314 999 1,037 171 175 155	North Ri 311 311 313 323 323 331 336 336 336 341 341 341 341 342 342 342	adial (110 C-1 C-2 S-2-A C-4 S-1-A S-2-S C-1/4 C-1/2 C-1/2 C-4 S-2-A S-2-S S-1-S C-1/2 C-1/2 C-2 C-4 C-1/2 C-1/2 C-4 C-1/2 C-4 C-4 C-4 C-4 C-4 C-4 C-4 C-4 C-2 C-4 C-2 C-4	missiles): 2,49 4,98 7.53		24 12 10 22 20 29 20 19 19 19 313 269 232 219 213 166 185 93 87	375 375 375 381 381 381 381 382 382 382 382 383 383 383 383 383 383	C-1/2 C-1 C-2 C-4 S-1-S S-2-S S-2-A C-1/4 C-1/2 C-1 C-2 C-1/4 C-1/2 C-1/2	25.00	3.73 3.81 1.15 1.66 1.66 2.01 2.01 2.09 2.21 2.46 8.68 3.13 4.17 2.88 3.13 4.47 4.54	200 122 123 128 105 109 152 100 104 104 104 98 74 74 78 88 25 57 89 99 99

TABLE 3.7 RANGES FOR EJECTED 7.4-INCH-DIAMETER ALUMINUM SPHERES
One unidentifiable sphere was found 16 feet from GZ.

Missile	Hole ^a	Depth of Burial	Range
		feet	feet
1 2 3 4 5	1 1 1 1	0.53 1.41 2.02 2.63 3.24 3.83	NR 20 NR NR NR NR
7	2	0.98	55
8	2	1.58	23
9	2	2.20	24
10	2	2.82	24
11	2	3.42	20
12	2	4.09	19
13	NE ^c 3 3 3 3 3	NE	NE
14		0.30	251
15		0.84	260
16		1.47	297
17		2.07	112
18		2.65	108
19	2 ₄ 2 ₄ 2 ₄ 2 ₄ 2 ₄ 2 ₄	1.21	984
20		1.84	411
21		2.45	410
22		3.07	313
23		3.68	124
24		4.28	99

Key to preshot locations:
Hole 1 - 3.79 feet from GZ, 345°10'20" azimuth;
Hole 2 - 6.25 feet from GZ, 6°42'00" azimuth;
Hole 3 - 8.78 feet from GZ, 12°12'00" azimuth;
Hole 4 - 11.28 feet from GZ, 14°00'40" azimuth.

b NR--not recovered.

c NE--not emplaced.

TABLE 3.8 IMPACT DATA FOR MISSILES CAUGHT IN STYROFOAM MISSILE TRAPS

Nominal a Diameter	Missile Weight	Range	Impact Angle Relative to Horizontal	Penetration Depth	Calculated Impact Velocity	E
inches	pounds	feet	degrees	feet	ft/sec	
1.75	0.12	607	84	0.13	73	9.9
1.50	0.16	346	83	0.07	55	7.5
1.50	0.09	509	75	0.11	70	6.9
0.90	0.05	706	77	0.13	92	6.6

a Smallest sieve opening through which particle could pass.

Figure 3.1 Mineral Rock apparent crater and adjacent debris field. Circles indicate large particles described in Section 3.1.

Figure 3.2 A 400-pound fragment of a larger missile that landed about 1,200 feet northeast of GZ. This fragment (circle) was part of a larger missile whose splash crater is visible in the foreground of the picture. Part of the large missile also struck one of the trees in the background; the broken branches are visible to the left (arrow).

U. S. STANDARD SIEVE OPENING IN INCHES **→**NUMBERS 8 10 0 $2 1\frac{1}{2}$ 1 3/4 1/2 3/8 3 1,0 WEIGHT PERCENT FINER BY WEIGHT BY COARSER PERCENT S GRAIN SIZE, MILLIMETERS

Figure 3.3 Range of particle-size distributions for <6-inch ejecta particles in collector areas (see Table 3.3).

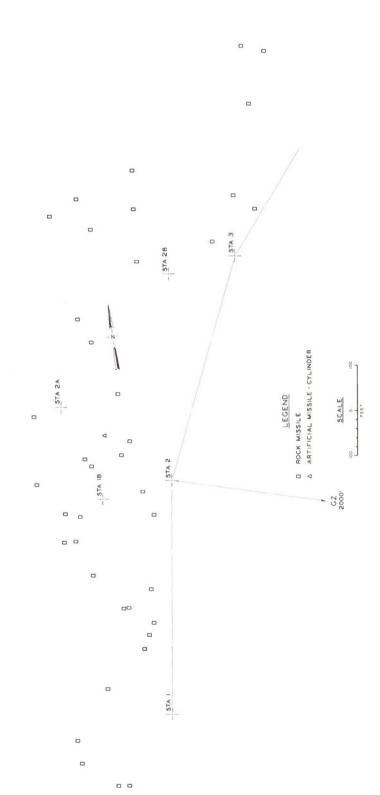
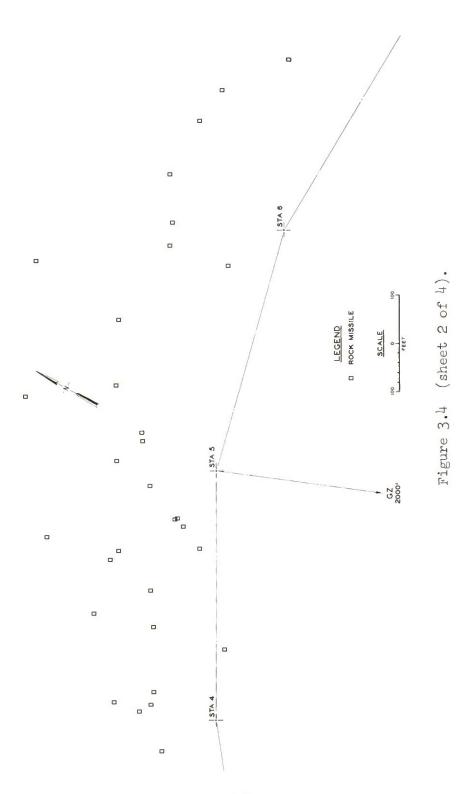
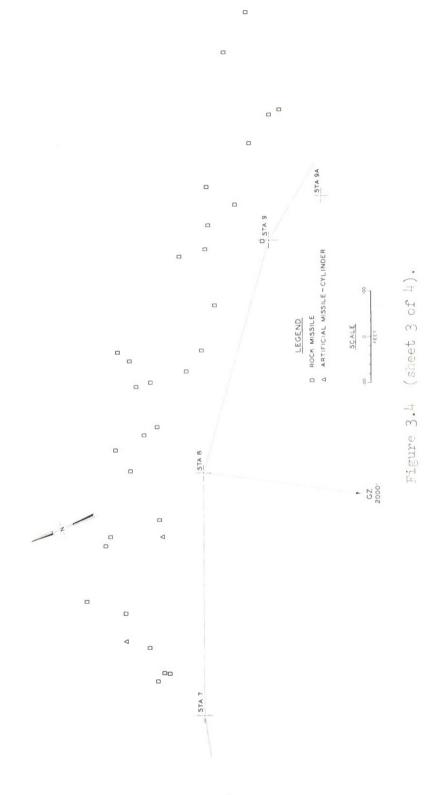
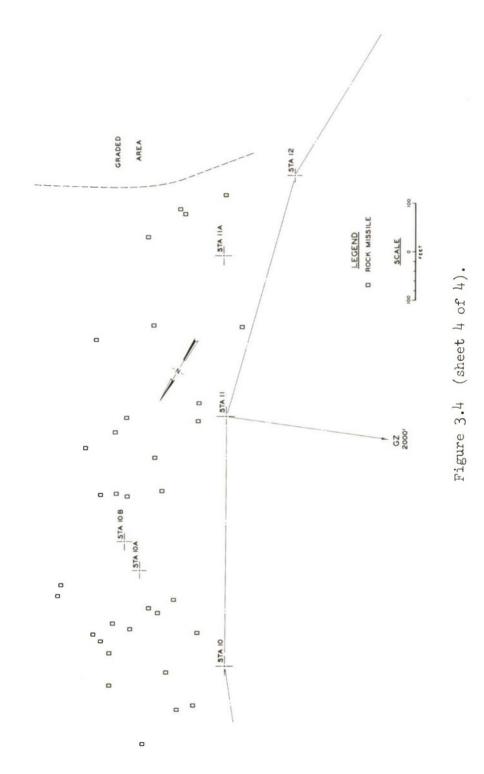





Figure 3.4 Plane-table survey of the ejecta field periphery, Stations 1 through 12. Terrain became quite broken near Station 12, and it was suspected that the graded area had been disturbed postshot (sheet 1 of μ).

Final artificial missile positions in the crater area. Figure 3.5

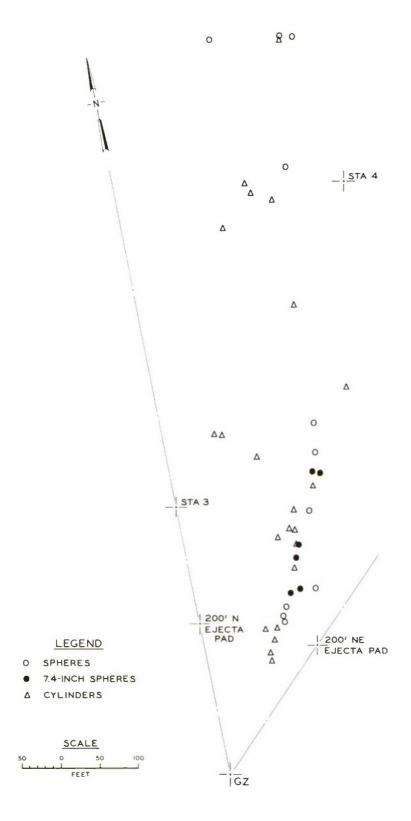


Figure 3.6 Final artificial missile positions along the north radial.

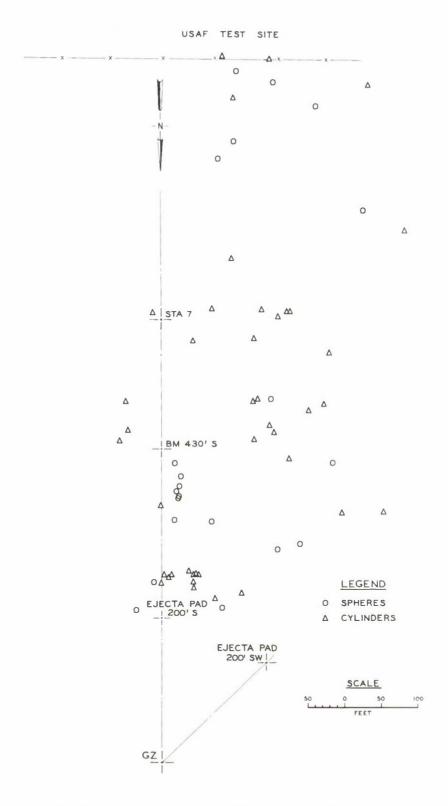


Figure 3.7 Final artificial missile positions along the south radial.

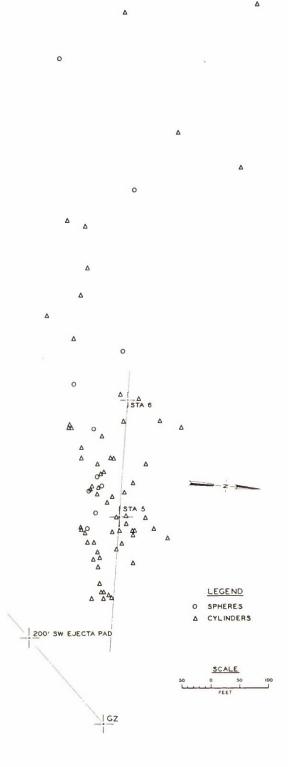


Figure 3.8 Final artificial missile positions along the west radial.

Figure 3.9 Recovered cylinder and spheres that were embedded in a block of rock ejected into the crater lip.

CHAPTER 4

DISCUSSION OF RESULTS

4.1 EJECTA AREAL DENSITY, VOLUME, AND DISTRIBUTION

Several techniques were used to determine ejecta areal density, volume, and azimuthal distribution in order to describe the Mineral Rock ejecta field. Some, such as excavation of the crater lip, use of collector areas, and plane-table surveys, were well-established testing techniques in ejecta work. However, the use of aerial photography for counting and sizing missiles was a new technique. The data obtained from the conventional techniques were generally good, particularly for the crater lip and adjacent areas. The data from the aerial photographs were less precise and were limited to particles that were 4 inches or greater in diameter. As mentioned in Section 2.3.2, area coverage was not as great as had been planned and was restricted to the areas north and northwest of GZ.

A digital computer was used extensively in reducing the data obtained from the aerial photographs. Appendix B is a listing of the computer program used. For input, data from computer cards concerning individual missiles (Appendix A) were fed into the computer. All rectangular coordinates were converted to polar coordinates, and a weight was assigned to each missile according to its size classification (the procedure for determining the weight-size class relationship is discussed in Section 4.2). Sampling areas, bounded by azimuthal radials and circumferential rings around GZ, were then delineated. The standard sampling area was 2 degrees in width and 25 feet in radial thickness. The program then searched the data and separated all missiles falling in a given sampling area, obtained the areal density of the missiles in the area by dividing total missile weight by area, and listed the missile size distribution in the area. Finally, a leastsquares subroutine calculated the coefficient and power functions describing the relationship between range from GZ and both ejecta areal density and ejecta numerical density.

Using the lip excavation, collector area, and acrial photography data, a quantitative description of the ejecta field in terms of ejecta areal density was obtained. Figure 4.1 shows contours of ejecta areal density in and adjacent to the crater lip to a radial distance of 200 feet. The beginnings of the northwest and southeast rays are clearly visible. Figure 4.2 is the basic ejecta areal density curve

$$\delta = KR^{-n} \tag{4.1}$$

Where: $\delta = \text{ejecta areal density}$

K = a constant

R = range from GZ

n = an exponent

In the following calculations, δ is in pounds per square foot and R is in feet. The debris field is divided into two regions, the crater lip and the area beyond the crater lip. The ejecta areal density equation for the crater lip is

$$\delta = 2.06 \times 10^{14} R^{-1.62}$$
 (4.2)

This curve was calculated from the data obtained from the lip excavation. By combining the collector area and aerial photography data, the average curve for the ejecta beyond the crater lip was found to be

$$\delta = 6.96 \times 10^{5} R^{-2.58} \tag{4.3}$$

By combining all data, the average ejecta curve for the entire debris field became

$$\dot{\delta} = 1.85 \times 10^6 R^{-2.73}$$
 (4.4)

The weight of the cjected material $\rm E_w$ can be estimated by integrating Equation 4.1 for the area under the average areal density curve and revolving it through 360 degrees. Thus,

$$E_{W} = 2\pi \int_{R_{1}}^{R_{2}} \delta R dR$$
 (4.5)

where subscripts 1 and 2 refer to the selected limits of integration. In determining the ejecta weight in the crater lip, the limits of integration are the apparent crater radius r_a and crater lip radius r_ℓ . In determining the weight of the discontinuous ejecta, the limits of integration are r_ℓ and the maximum missile range r_e (see Figure 1.1). A lower limit of r_a appears permissible for a burst geometry such as that of Mineral Rock, where there is no definite lip crest. However, when a well-defined lip crest is formed (at r_h), the weight of the ejecta between r_a and r_h must be calculated separately. In most ejecta calculations, an upper limit of infinity for the discontinuous region yields a result little different from that yielded by the substitution of the maximum measured ejecta range. For Mineral Rock, r_e was used to obtain better agreement for ejecta missile ranges calculated in Section 4.3. For the crater lip (continuous ejecta)

$$(E_w)_{lip} = 2\pi \int_{32}^{64} (2.06 \times 10^4 R^{-1.62}) R dR$$

= $3.82 \times 10^5 \text{ pounds}$

For the area beyond the crater lip (discontinuous ejecta)

$$(E_w)_{dis} = 2\pi \int_{64}^{2,800} (6.96 \times 10^5 R^{-2.58}) R dR$$

= $5.98 \times 10^5 \text{ pounds}$

With the upper limit set equal to infinity,

$$(E_{\rm w})_{\rm dis} = 6.73 \times 10^5 \text{ pounds}$$

Integration of the entire ejecta field (Equation 4.5) yields

$$E_{\rm W} = 1.22 \times 10^6$$
 pounds for limits $r_{\rm a}$ to $r_{\rm e}$

and

$$E_{\rm w} = 1.27 \times 10^6$$
 pounds for limits $r_{\rm a}$ to infinity

For the ejecta in the crater lip, a good experimental check of the weight was possible. A total of 301,000 pounds of rock was excavated from the lip sectors that fell within the lip radius of 64 feet, as explained in Section 2.3.1. These sectors represented approximately 70 percent of the lip area; thus, the total weight in the lip can be roughly estimated as

$$\frac{100}{70}$$
 × 301,400 = 430,000 pounds

From the calculations above, it appears that over 1,000,000 pounds of rock were ejected from the crater, with about 40 percent of this amount falling within the crater lip and 60 percent beyond. Volumetrically, this amounts to about 230 yd³ of in situ material, 90 yd³ in the crater lip and 140 yd³ beyond. Except for the lip measurements, these figures are probably too low. From the volumetric analysis in Reference 12, about 400 yd³ were permanently ejected from the crater, of which about 190 yd³ traveled beyond the lip. There are several possible reasons for this discrepancy of 50 yd³ of ejecta beyond the lip. Although the photographic sample area was large, it was confined to the north and west, and may not have been truly representative. The large boulders in other parts of the debris field were not included; the addition of these would have added significantly to the total.

Then, too, the exclusion of particles less than 4 inches in diameter may have amplified the discrepancy; previous sampling techniques utilizing collector pads have included small particulate matter, even though its origin was suspect.

Regarding azimuthal distribution, the two main rays of ejecta deposition were at approximately 120 and 300 degrees in azimuth. Figure 2.4 shows that these rays roughly parallel the main northwest-southeast joint that passes about 4 feet southwest of GZ. It seems quite possible that material leaving the crater at low angles could have hit the joint face and been deflected along a path roughly parallel to the joint.

4.2 STATISTICS OF NATURAL MISSILE SIZES

In developing a technique for using aerial photographs in order to count, size, and determine mass density of ejecta missiles, the major problem encountered was that of assigning a weight to each missile according to its presented area A in the photograph. To accomplish this, a large number of missiles were carefully measured in the field and their dimensions and weights recorded, as listed in Table 4.1. Length l, width w, and their product, the specimen area, are the planar dimensions that are visible in a photograph. For each specimen, a weight was calculated by assuming the volume of the missile to be a rectangular prism with the dimensions of ℓ , w , and height, d , and by then multiplying its volume by the unit weight v of the granite. The ratio of the measured weight $W_{\rm m}$ to the calculated weight W was found to average about 0.5, with extremes of 0.275 to 0.831. The ratio tended to be lower than the average for smaller missiles (<8 inches nominal diameter) and higher than the average for larger missiles. With the three dimensions available through stereophotography, this method would provide a good means of estimating weight. However, since stereophotography was not available for Mineral Rock, it was necessary to assign missile weight on the basis of presented area. It was determined that the data were best treated in three area groupings and that a linear equation gave the best fit over

each grouping. The ejecta area-to-weight relationships were calculated as follows:

$$W_{t} = 0.15A - 0.72$$
 for $A \le 50$; $\sigma = 0.95$ (4.6a)

$$W_{t} = 0.30A - 8.94$$
 for $50 < A < 120$; $\sigma = 4.80$ (4.6b)

$$W_{+} = 0.30A - 10.27$$
 for $A \ge 120$; $\sigma = 21.94$ (4.6c)

where W_t is missile weight (based on presented area) in pounds, A is the presented area in square inches, and σ is the standard deviation of the data points about the curves. Using these equations, the mean weights to be assigned to each size class of the aerial photography ejecta data were calculated. Area for each size class was assumed to be that of a circle whose diameter was the midpoint between the size class boundaries. For example, Size Class 2 was bounded by missiles of nominal diameters 8 and 12 inches. The midpoint diameter of 10 inches gives an area of 78.5 in², which, substituted into Equation 4.6b, gives a missile weight of 14.4 pounds. Size class weights calculated in this manner (with allowances for rounding off) were as follows:

Size Class	Weight
	pounds
1 2 3 4 5	3.55 14.4 42.2 92.6 200.0

These weights were used in the computer program analysis described in Section 4.1 and listed in Appendix B.

Of principal interest in the ejecta field are the distribution by

size of the natural missiles and the changes in distribution by size as a function of range from GZ. Table 4.2 lists the distribution, according to size classes, for the sampling areas given in Table 3.4. For each area, the total number and total weight of the missiles are listed, along with the numbers and weights for each size class. Table 4.3 summarizes these data, giving the percentage by weight of each size class as a function of range from GZ. Figure 4.3 shows missile size distribution versus range. Because of the limited sampling area, distance from GZ, and the relatively large missile size of the smallest size class (4 to 8 inches), the data points show considerable scatter. However, trends are evident. The percentage of ejecta in Size Class 1 tends to increase steadily with increasing range. The percentage of ejecta in the largest size classes, Classes 3 and 4, drops off rapidly with increasing range. As shown in Figure 4.3, beyond 600 or 700 feet from GZ, these classes are represented by a small number of random missiles. The number of missiles in Size Class 2 rises as the number in the larger size classes decreases, then begins to decline at a distance equal to about $25 \, r_a$. In general, the number of missiles in the larger size classes declines as range increases until finally the smallest size class predominates. It should be noted that the relative shapes and positions of curves on plots like Figure 4.3 are dependent on the boundaries and magnitudes of the missile size classes used. In the outer reaches of the debris field, where the total number of missiles becomes small, the continuity of the curves tends to break down as random large missiles comprise a disproportionate percentage of the ejecta weight. For Mineral Rock, this breakdown occurred beyond about 800 feet from GZ, as shown in Figure 4.3. The observed distribution probably cannot be completely explained until ballistic and drag coefficients for natural ejecta, as well as initial angles and velocities of ejection, are determined.

4.3 EJECTA MISSILE RANGES

4.3.1 Scaling Considerations. Empirical scaling of maximum

natural missile ranges for the Mineral Rock shot geometry is shown in Figure 4.4. In view of the sensitivity of ejecta distribution to charge geometry, only the calibration event with an HOB of 0.9 charge radius was considered along with Mine Ore and Mineral Rock. Thus, the indicated scaling factor $W^{0.31}$ is at present supported by only three data points and differs widely from the $W^{1/6}$ scaling used in Reference 5. The latter satisfactorily describes the upper limit of maximum-range data for buried explosions.

4.3.2 Deposition as a Function of Range. The percentage of ejected material deposited at any range can be determined using Equation 4.5 and solving for the upper limit of integration. The 90 percent limit is a frequently quoted figure, since it represents a range of comparative safety. Using the equation for ejecta beyond the crater lip,

$$(E_w)_{90} = 2\pi \int_{64}^{R_{90}} (6.96 \times 10^5 R^{-2.58})_{R} dR$$

where the subscript 90 refers to the radial limit within which 90 percent of the ejecta falls.

$$(0.90)(5.98 \times 10^5) = (4.37 \times 10^6) \left[\frac{R_{90}^{-0.58}}{-0.58} - \frac{(64)^{-0.58}}{-0.58} \right]$$

$$R_{90} = 1,012 \text{ feet}$$

Similar calculations can be made for various limits, both within and beyond the lip. Figure 4.5 illustrates ejecta deposition as a function of range for Mineral Rock.

4.3.3 Range as a Function of Origin. Ranges of ejected artificial missiles are shown in Figures 4.6 through 4.8 as contours (isorange lines) drawn through their origins. Ranges of grout ejecta are similarly shown in Figure 4.9, taken from Reference 12. Figure 4.10, also from Reference 12, summarizes in general the experience of both artificial missile and colored-grout experiments. Extreme-range ejecta originated near the surface at a distance of about two charge radii from

GZ. Similar observations have been made for craters resulting from comparable shot geometries in soil (Reference 13).

4.4 ARTIFICIAL MISSILE DATA

Recovery of identifiable artificial missiles of all types was considered good. A detailed analysis of the data thus obtained is beyond the scope of this report; specifically, no attempt will be made to determine drag or ballistic coefficients. Certain general observations, however, do appear appropriate.

First, examination of the artificial missile data presented in Table 3.6 and of the illustrations of ejecta origins (Figures 4.6 through 4.9) clearly reveals the sensitivity of missile range to preshot position (depth and distance from GZ). For this reason, comparisons of missile performance must be made within a very narrow range of depths for a given borehole. Further, for the purpose of the initial assessment in this report, only those missiles that appeared to have achieved a ballistic trajectory were considered, and those that failed to clear the crater lip (~100 feet) were arbitrarily excluded. Many missiles apparently failed to break free from the surrounding rock or grout, and some of the cylinders, which had been held in a package by narrow annuli of a paperlike material with strong adhesive properties on both sides, failed to separate. When this occurrence was confirmed or strongly suspected, the missiles were excluded from consideration.

There were, of course, many missiles recovered that could not be identified and were of no value. Some missiles were badly deformed, as was common with the lead spheres. However, if the deformed missiles were identifiable, they were listed in Table 3.6, even though their balistic properties may have been altered. In the case of the 4-inch-diameter cylinders, several identifiable missiles were sheared in two, and the two pieces traveled different distances. These missiles, too, were listed in Table 3.6, but they were not included in the brief analysis presented here. When all exclusions were made, there were far fewer data points than had originally appeared.

Using the data in Table 3.6, a rough comparison was made of

extreme ejection distances for missiles from adjacent sphere and cylinder packages. Of the 41 comparisons considered valid, the spheres traveled farthest in 21 cases and the cylinders in 20, indicating similar maximum ranges for the two shapes. Next, comparisons were made of the effects of missile size and density on ejection ranges of missiles from individual sphere packages and of the effects of missile size and shape on ejection ranges of missiles from individual cylinder packages. For these comparisons, too, Table 3.6 was the data source. Only 16 packages of spheres were considered in the final analysis, and these are listed in Table 4.4, which ranks each spherical missile by distance traveled relative to distances traveled by other spheres in the same package. In addition to the criteria listed above, it was necessary to have two or more missiles in a package recovered and identified in order to make a comparison.

A size comparison between spheres of the same materials shows a slight (9 out of 15) tendency for the 2-inch spheres to outdistance the 1-inch spheres. The aluminum spheres (whose density closely matched that of the in situ tonalite) provided the range extremes most often, both in the 1- and 2-inch-diameter missiles. They were closely followed by the steel spheres. Only three comparisons could be made for lead spheres, and all showed poor range performance. As mentioned previously, the lead missiles deformed badly, although whether the deformation occurred during the ejection process or upon impact could not be ascertained. Relatively few plastic missiles were recovered, but the performance of the 1-inch plastic spheres was surprisingly good, and use of a greater number of these might have enhanced the results considerably.

In order to compare the performances of the cylinders and cylindrical sections, Table 4.5 was arranged to show the number of times that missiles of each size/shape category fell within a given range ranking compared with the number of possibilities for a poorer performance. This approach creates four range ranks (for five size/shape categories--the last missile in each category had no opportunity for a poorer performance, hence nothing with which to be compared). The

results indicate that the maximum range is achieved by a 2-inch-long cylinder; however, within the first two range rankings, little difference is noted between this missile, the 1-inch-long cylinder, and the 1-inch-long, half-cylindrical wedge.

Finally, a comparison was attempted between the WES 1- and 2-inch spheres and the 7.4-inch aluminum spheres emplaced for Aerospace Corporation (Table 3.7), using the same criteria as before. This time it was necessary, however, to make the comparison between adjacent boreholes on the north radial, thus necessitating a very informal interpolation between observed ranges and between boreholes at comparable depths. Obviously, only a rough comparison is possible. The ranges associated with the larger spheres were similar to those associated with the smaller spheres with only one exception: 7.4-inch Sphere 19 traveled a much greater distance than would have been expected from the missile data for the adjacent boreholes.

4.5 COMPARISON WITH MINE ORE

Volumetric analyses of the Mine Ore and Mineral Rock craters (References 3 and 11) indicate that there was nearly 40 percent more ejected material for Mineral Rock than for Mine Ore. However, analysis of the ejecta field areal density indicates (incorrectly) more throwout in the Mine Ore Event. Two reasons are suspected: (1) the inability of aerial photography used in Mineral Rock to discern particles less than 4 inches in diameter, and (2) the fact that the only areas sampled by aerial photography in the Mineral Rock Event lay generally in the northwest quadrant of the test area.

Areal distribution curves for the two experiments, while different, were sufficiently close to establish a reasonable value for this parameter. The maximum ejecta range was definitely greater in Mineral Rock, for which the distribution curve shows a generally thinner deposition throughout the ejecta field. Unfortunately, the limited sampling prevented construction of an envelope containing maximum and minimum deposition, as was done in Mine Ore. Figure 4.11 shows a comparison of average ejecta distribution as a function of range for these two events.

Also shown in Figure 4.11 for comparison purposes is an envelope of data from explosions of buried charges.

The Mine Ore artificial missile experiment provided only a fraction of the data provided by Mineral Rock. The number of missiles emplaced in Mine Ore was only about 22 percent of the number emplaced in Mineral Rock, and recovery was poorer (about 19 percent compared with 28 percent). By the time the Mine Ore data were subjected to the same selection process employed in this study, only 39 data points were available. All except one of these points were on the south radial. There were insufficient data on cylinders and cylindrical sections (five identifiable missiles) to support any conclusions. The data concerning spheres were confined to relatively short-range trajectories (209 feet was the maximum) for aluminum missiles (only two data points for 2.5inch lead spheres). The same dependence on origin was noted, but beyond the crater lip no performance trends were evident for the 1- and 2.5-inch-diameter aluminum spheres employed in the Mine Ore experiment. The larger missiles, however, did appear to clear the lip area more often than the smaller ones. The very limited data available suggested a slight trend toward better-than-average ballistic performance for 5.5- and 6-inch aluminum spheres, and poorer performance for 2.5-inch lcad spheres.

TABLE 4.1 EJECTA FRAGMENTATION STATISTICS

Sample	Specimen	Dimension	s, feet	Presented Specimen	Calculated Specimen	Measured Weight of	Calculated Specimen	W _m /W _c
	Length £	Width W	Height d	Area Lw	Volume (£wd)	Specimen Wm	Weight W c	
				in ²	ft ³	pounds	pounds	
2-Inch Gr	ouping:							
1	0.22	0.16	0.09	5.07	0.0032	0.15	0.513	0.292
2	0.20	0.16	0.10	4.61	0.0032	0.18	0.518	0.347
3	0.20	0.10	0.06	2.88	0.0012	0.06	0.194	0.309
4	0.23	0.18	0.15	5.96	0.0062	0.34	1.006	0.338
5	0.20	0.17	0.07	4.90 4.32	0.0024	0.12	0.386 0.583	0.311
7	0.24	0.12	0.08	4.15	0.0023	0.11	0.373	0.257
7 8	0.22	0.15	0.10	4.75	0.0033	0.20	0.535	0.374
9	0.20	0.18	0.08	5.18	0.0029	0.13	0.467	0.279
10	0.23	0.11	0.08	3.64	0.0020	0.13	0.328	0.396
11	0.18	0.13	0.07	3.37	0.0016	0.08	0.265	0.301
12	0.24	0.15	0.11	5.18	0.0040	0.29	0.642	0.452
13	0.23	0.13	0.07	4.31	0.0021	0.11	0.339	0.324
14 15	0.20	0.16	0.10	4.61	0.0032	0.20	0.518	0.386
16	0.20	0.12	0.10	3.33 3.46	0.0026	0.19	0.374 0.428	0.508
17	0.20	0.14	0.12	4.03	0.0034	0.19	0.544	0.349
18	0.25	0.11	0.08	4.00	0.0022	0.21	0.356	0.589
19	0.23	0.14	0.09	4.64	0.0029	0.19	0.469	0.405
20	0.23	0.17	0.07	5.63	0.0027	0.18	0.443	0.406
21	0.20	0.12	0.04	3.46	0.0010	0.08	0.156	0.514
22	0.18	0.14	0.09	3.63	0.0023	0.12	0.367	0.327
23 24	0.20	0.16	0.09	4.61	0.0029	0.14	0.467	0.300
25	0.25	0.10	0.08	3.60 3.83	0.0020	0.13	0.324	0.401
4-Inch Gr		0.14	0.00	3.03	0.0021	U•14	0.34)	0.400
4-Inch Gr	ouping:							
1	0.30	0.15	0.12	6.48	0.0054	0.51	0.875	0.583
2	0.30	0.16	0.11	6.91	0.0053	0.44	0.855	0.514
3 4	0.30	0.20	0.13	8.64	0.0078	0.54	1.264	0.427
5	0.27	0.22	0.13	8.55 8.48	0.0077	0.52	1.251 1.334	0.416
5	0.27	0.20	0.17	7.78	0.0092	0.76	1.487	0.511
7	0.30	0.20	0.10	8.64	0.0060	0.34	0.972	0.350
7	0.34	0.20	0.12	9.79	0.0082	0.49	1.322	0.371
9	0.30	0.18	0.10	7.78	0.0054	0.37	0.875	0.423
10	0.33	0.19	0.08	9.03	0.0050	0.36	0.813	0.443
11	0.30	0.17	0.12	7.34	0.0061	0.46	0.991	0.464
12 13	0.31	0.21	0.15	9.37 8.16	0.0098	0.70	1.582 1.296	0.442
14	0.34	0.18	0.10	8.81	0.0061	0.47	0.991	0.474
15	0.30	0.25	0.07	10.80	0.0053	0.47	0.851	0.553
16	0.25	0.23	0.07	8.28	0.0040	0.22	0.652	0.337
17	0.29	0.12	0.14	5.01	0.0049	0.27	0.789	0.342
18	0.30	0.17	0.08	7.34	0.0041	0.44	0.661	0.666
19	0.32	0.18	0.13	8.29	0.0075	0.52	1.213	0.429
20	0.35	0.18	0.12	9.07	0.0076	0.52	1.225	0.425
21 22	0.32	0.16	0.09	7.37 9.50	0.0046	0.31	0.746	0.415
23	0.33	0.19	0.15	9.03	0.0094	0.51	1.524	0.324
24	0.31	0.12	0.12	5.36	0.0045	0.32	0.723	0.442
6-Inch Gr	ouping:							
1	0.48	0.23	0.15	15.90	0.0166	1.56	2.683	0.581
2	0.55	0.38	0.20	30.01	0.0418	2.85	6.772	0.421
3	0.40	0.24	0.18	13.82	0.0173	1.43	2.799	0.511
4 5	0.53	0.36 0.35	0.20	27.48 21.17	0.0382	2.30	6.182	0.372
2	V.42	0.39	0.17			1.23	3.572	0.344
				(Contin	ued)			

a Unit weight $\gamma = 162 \text{ lb/ft}^3$.

TABLE 4.1 (CONTINUED)

Sample	Specimen	Dimensions	s, feet	Presented Specimen	Calculated Specimen	Measured Weight of	Calculated Specimen	W _m /W _c
	Length &	Width w	Height d	Area lw	Volume (£wd)	Specimen W _m	Weight Wc (£wd)Y	
				in ²	rt ³	pounds	pounds	
6-Inch Gro	ouping: (Co	ont'd)						
6	0.45	0.25	0.15	16.20	0.0169	1.36	2.734	0.497
7	0.39	0.24	0.14	13.48	0.0131	1.08	2.123	0.509
8	0.45	0.35	0.24	22.68	0.0378	3.38	6.124	0.552
9	0.50	0.43	0.19	30.96 17.11	0.0409	2.93 1.84	5.618 4.042	0.443
11	0.46	0.26	0.27	17.22	0.0323	1.89	5.231	0.361
12	0.40	0.33	0.15	19.01	0.0198	1.57	3.208	0.489
13	0.43	0.15	0.12	9.29	0.0077	0.63	1.254	0.502
14	0.36	0.35	0.14	18.14	0.0176	1.00	2.858	0.350
15	0.38	0.19	0.17	10.40	0.0123	1.05	1.988	0.528
16	0.45	0.21	0.14	13.61	0.0132	0.99	2.143	0.462
17 18	0.44	0.26	0.11	16.47	0.0126	0.99	2.039	0.486
19	0.46	0.21	0.12	14.17 13.91	0.0116	1.39	1.878	0.693
20	0.50	0.22	0.12	15.84	0.0132	0.91	2.138	0.426
21	0.42	0.30	0.19	18.14	0.0239	1.78	3.878	0.459
22	0.50	0.21	0.17	15.12	0.0179	1.17	2.892	0.405
23	0.50	0.25	0.14	18.00	0.0175	1.45	2.835	0.511
24	0.43	0.24	0.15	14.86	0.0155	1.20	2.508	0.479
25	0.47	0.17	0.10	11.51	0.0080	0.73	1.294	0.564
8-Inch Gro	ouping:							
1 2	0.67	0.40	0.21	38.59 23.80	0.0563	5.33 3.45	9.117 5.356	0.585
3	0.70	0.28	0.20	28.22	0.0392	3.12	6.350	0.491
3	0.65	0.48	0.20	44.93	0.0624	3.98	10.109	0.394
5	0.65	0.40	0.22	37.44	0.0572	4.32	9.266	0.466
6	0.60	0.30	0.13	25.92	0.0234	2.05	3.791	0.541
7	0.60	0.35	0.15	30.24	0.0315	2.80	5.103	0.549
9	0.70	0.35	0.25	35.28 30.24	0.0613	5.10	9.923	0.514
10	0.65	0.43	0.23	40.25	0.0623	4.45	10.414	0.409
11	0.58	0.28	0.20	23.39	0.0325	2.54	5.262	0.483
12	0.60	0.35	0.19	30.24	0.0400	3.38	6.464	0.523
13	0.58	0.19	0.10	15.87	0.0110	0.88	1.785	0.493
14	0.65	0.27	0.20	25.27	0.0351	3.04	5.686	0.535
15 16	0.68	0.47	0.14	46.02	0.0447	3.40	7.249	0.469
17	0.70	0.40	0.13	24.19 36.86	0.0218	2.06 4.17	3.538 9.539	0.582
18	0.60	0.33	0.25	28.51	0.0495	4.83	8.019	0.602
19	0.60	0.27	0.19	23.33	0.0308	3.28	4.986	0.658
20	0.58	0.35	0.27	29.23	0.0548	4.37	8.879	0.492
21	0.60	0.24	0.20	20.74	0.0288	3.29	4.666	0.705
22	0.64	0.48	0.20	44.24	0.0614	4.31	9.953	0.433
23	0.63	0.34	0.23	36.29 30.84	0.0493	5.13 3.13	9.390 7.981	0.546
10-Inch Gr	ouping:							
1	0.85	0.43	0.37	52.62	0.1352	12.05	21.908	0.550
2	0.90	0.45	0.27	58.32	0.1094	9.11	17.715	0.514
3	0.90	0.34	0.27	44.06 42.84	0.0826	9.49	13.384	0.709
5	0.85	0.35	0.34	67.97	0.1012	10.31 9.02	16.386 13.764	0.629
5	0.75	0.58	0.30	62.64	0.1305	10.31	21.141	0.488
7	0.77	0.43	0.27	47.68	0.0894	11.10	14.482	0.766
8	0.90	0.36	0.25	46.66	0.0810	7.22	13.122	0.550
9	0.82	0.34	0.17	40.15	0.0474	4.44	7.678	0.578
	0.96	0.47	0.25	64.97	0.1128	55	18.274	0.638

(2 of 3 sheets)

TABLE 4.1 (CONCLUDED)

Sample	Specimen	Dimensions,	feet	Presented Specimen	Calculated Specimen	Measured Weight of	Calculated Specimen	Wm/Wc
	Length &	Width W	Height d	Area Lw	Volume (Lwd)	Specimen W _m	Weight Wc (£wd)Y	
				in ²	ft ³	pounds	pounds	
10-Inch Gro	uping (Co	ont'd):						
11	0.98	0.35	0.29	49.39	0.0994	7.72	16.114	0.479
12	0.90	0.38	0.35	49.25	0.1197	7.98	19.391	0.412
13 14	0.75	0.65	0.21	70.20 57.60	0.1024	10.33	16.585	0.623
15	0.98	0.55	0.25	77.62	0.1000	11.28 9.67	16.200 18.337	0.696
12-Inch Gro	ouping:							
1	1.00	0.63	0.32	90.72	0.2016	15.53	32.659	0.476
2	1.03	0.55	0.19	81.58	0.1076	12.24	17.437	0.702
3	0.90	0.50	0.32	64.80	0.1440	10.41	23.328	0.446
4	1.08	0.55	0.26	85.54 96.42	0.1544	14.66	25.019	0.586
5	1.00	0.40	0.20	57.60	0.0800	7.00	30.373 12.960	0.540
7 8	0.92	0.55	0.35	72.86	0.1771	19.86	26.690	0.692
8	1.07	0.52	0.28	80.12	0.1558	15.95	25.238	0.632
9	1.04	0.50	0.44	74.88	0.2288	20.00	37.066	0.540
10	1.09	0.85	0.30	133.42 86.40	0.2040	21.00	45.028 33.048	0.466
12	0.98	0.53	0.40	74.79	0.2078	15.74	33.657	0.468
13	0.90	0.70	0.23	90.72	0.1449	12.70	23.474	0.541
14 15	1.05	0.75	0.45	113.40 74.16	0.3544	31.00	57.409 25.029	0.540
14-Inch Gro		0.70	0.30	14.10	0.1)4)	16.14	2).029	0.40)
1	1.16	0.67	0.30	111.92	0.2332	16.92	37.772	0.448
2	1.20	0.73	0.45	126.14	0.3942	30.11	63.860	0.471
	1.20	0.80	0.27	138.24	0.2592	22.09	41.990	0.526
3	1.20	0.86	0.47	148.61	0.4850	42.50	78.576	0.541
5	1.25	0.70	0.32	126.00	0.2800	20.50	45.360	0.452
7	1.20	0.90	0.42	155.52 88.36	0.4536	37.75 17.50	73.483 33.797	0.514
7 8	1.23	0.60	0.32	106.27	0.2362	23.50	38.258	0.614
9	1.23	0.48	0.28	85.02	0.1653	18.25	26.781	0.681
10	1.15	0.70	0.28	115.92	0.2254	23.75	36.515	0.650
11 12	1.15	0.70	0.50	115.92 123.98	0.4025	42.00	65.205	0.644
13	1.23	0.70	0.30	172.80	0.2583	18.50 35.00	41.845 87.480	0.400
14	1.20	1.05	0.55	181.44	0.6930	53.75	112.266	0.479
15	1.30	1.05	0.32	196.56	0.4368	30.00	70.762	0.424
16-Inch Gro	uping:							
1	1.52	1.00	0.32	218.88	0.4864	38.25	78.797	0.485
2	1.32	0.60 1.30	0.38	114.05 262.08	0.3010	33.00	48.756 182.801	0.677
2 3 4	1.50	0.98	0.60	211.68	0.8820	70.50 50.00	142.884	0.350
5	1.50	1.20	0.47	259.20	0.8460	64.25	137.052	0.469
	1.40	0.55	0.40	110.88	0.3080	26.00	49.896	0.521
7	1.35	0.80	0.40	155.52 122.69	0.4320 0.3408	44.50	69.984	0.636
9	1.42	0.93	0.40	176.77	0.6138	41.00 48.00	55.210 99.436	0.743
10	1.51	0.90	0.47	195.70	0.6387	59.00	103.474	0.570
18-Inch Gro	uping:							
1	1.50	1.10	0.55	237.60	0.9075	95.00	147.015	0.646
2	1.70	1.35	0.63	330.48 287.28	1.4459	96.75	234.228	0.413
3	1.90 2.15	1.15	0.42	356.04	1.6071	112.75 167.00	135.740 260.354	0.831
5	1.80	1.23	0.55	318.82	1.2177	110.75	197.267	0.561

(3 of 3 sheets)

TABLE 4.2 NATURAL MISSILE DISTRIBUTION BY SIZE

No Class 5 missiles appeared in the sample areas.

		Area		14min e	is and w	eignts c	of Missil	es in in	dicated	Size Cie	isses
Azimuthal Bounds	Radial Distance ^b	Total Number of	Total Weight	Clas	ss 1	Clas	s 2	Clas	s 3	Clas	ss 4
bounds	Distance	Missiles	METRIC	Number	Weight	Number	Weight	Number	Weight	Number	Weight
degrees	feet		pounds		pounds		pounds		pounds		pounds
249-251	488	1	3.6	1	3.6	0	0	0	0	0	0
	513	9	43.0	8	28.6	1	14.4	0	0	0	0
	538	2	7.1	2	7.1	0	0	0	0	0	0
	563	4	25.0	3	10.6	1	14.4	0	0	0	0
	588	1	3.6	1	3.6	0	0	0	0	0	0
	613	4	14.2	4	14.2	0	0	0	0	0	0
	638	0	0	0	0	0	0	0	0	0	0
251-253	488	4	25.0	3	10.6	1	14.4	0	0	0	0
	513	6	43.0	4	14.2	2	28.8	0	0	0	0
	538	3	32.4	1	3.6	2	28.8	0	0	0	0
	563		14.2	4	14.2	0	0	0	0	0	0
	588	4	14.2	4	14.2	0	0	0	0	0	0
	613	5	39.4	3	10.6	2	28.8	0	0	0	0
	638	2	7.1	2	7.1	0	0	0	0	0	0
253-255	488	1	14.4	0	0	1	14.4	0	0	0	0
	513	24	52.8	3	10.6	0	0	1	42.2	0	0
	538	2	7.1	2	7.1	0	0	0	0	0	0
	563	3	21.5	2	7.1	1	14.4	0	0	0	0
	588	4	25.0	3	10.6	1	14.4	0	0	0	0
	613	8	39.3	7	24.9	1	14.4	0	0	0	0
	638	6 .	21.3	6	21.3	0	0	0	0	0	0
255-257	488	18	113.0	16	56.8	1	14.4	1	42.2	0	0
	513	7	35.7	6	21.3	1	14.4	0	0	0	0
	538	7	24.9	7	24.9	0	0	0	0	0	0
	563	7	46.6	5	17.8	2	28.8	0	0	0	0
	588	2	7.1	2	7.1	0	0	0	0	0	0
	613	1	3.6	1	3.6	0	0	0	0	0	0
	638	6	21.3	6	21.3	0	0	0	0	0	0
	713	0	0 3.6	0	3.6	0	0	0	0	0	0
	738	0	0	1	0	0	0	0	0	0	0
	763 788	1	3.6	1	3.6	0	0	0	0	0	0
	813	0	0	0	0	0	0	0	0	0	0
	838	0	0	0	0	0	0	0	0	0	0
	863	1	3.6	1	3.6	0	0	0	0	0	0
	888	1	3.6	1	3.6	0	0	0	0	0	0
257-259	488	24	96.0	23	81.6	1	14.4	0	0	0	0
271-275	513	20	259.0	15	53.2	2	28.8	2	84.4	1	92.6
	538	16	67.6	15	53.2	1	14.4	0	0	0	0
	563	16	67.6	15	53.2	î	14.4	0	0	0	0
	588	7	24.9	7	24.9	0	0	0	0	0	0
	613	10	95.9	7	24.9	2	28.8	1	42.2	0	0
	638	11	60.8	9	32.0	2	28.8	0	0	0	0
	713	2	7.1	2	7.1	0	0	0	0	0	0
	738	4	25.0	3	10.6	1	14.4	0	0	0	0
	763	4	14.2	4	14.2	0	0	0	0	0	0
	788	6	43.0	4	14.2	2	28.8	0	0	0	0
	813	6	32.2	5	17.8	1	14.4	0	0	0	0
	838	1	3.6	í	3.6	Ō	0	0	Ö	0	0
	863	6	32.2	5	17.8	1	14.4	0	0	0	0
	888	6	21.3	6	21.3	0	0	0	0	0	0
					(Continue						

 $^{^{\}mbox{\scriptsize a}}$ Azimuths are relative to true north.

⁽¹ of 6 sheets)

b Radial distances are relative to centers of sampled areas.

TABLE 4.2 (CONTINUED)

	Collector	Area		Numbe	rs and W	eights c	f Missil	es in In	dicated	Size Cla	sses
Azimuthal Bounds	Radial Distance	Total Number of	Total Weight	Clas	s l	Clas	ss 2	Clas	s 3	Clas	s 4
	Distance	Missiles	истрио	Number	Weight	Number	Weight	Number	Weight	Number	Weight
degrees	feet		pounds		pounds		pounds		pounds		pounds
259-261	488 513 538 563	26 30 20 19	234.7 149.9 103.6 100.0	18 26 17 16	63.9 92.3 60.4 56.8	6 4 3 3	86.4 57.6 43.2 43.2	2 0 0	84.4 0 0	0 0 0	0 0 0
	588 613 638	8 1 7	28.6 3.6 63.5	8 1 6	28.6 3.6 21.3	0 0	0 0	0 0 1	0 0 42.2	0 0	0 0
	713 738 763 788 813	5 1 6 9 3	28.6 3.6 21.3 32.0 10.6	4 1 6 9 3	14.2 3.6 21.3 32.0 10.6	1 0 0 0	14.4 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0
	838 863 888	3 5 9	10.6 17.8 43.0	3 5 8	10.6 17.8 28.6	0 0 1	0 0 14.4	0	0 0	0 0	0 0
261-263	488 513 538 563 588 613 638 713 738 763 788 813 838 863 888	46 47 27 10 14 11 2 3 3 4 1 4 2	390.0 324.0 267.0 163.0 199.0 60.8 18.0 21.5 10.6 14.2 14.4 14.2 7.1	35 35 21 6 8 9 1 2 3 4 0 4 2 3 0	124.0 124.0 74.6 21.3 28.6 32.0 3.6 7.1 10.6 14.2 0 14.2 0	9 11 4 1 3 2 1 0 0 0 0	130.0 158.0 57.6 14.4 43.2 28.8 14.4 0 0 0 14.4	1 1 3 3 0 0 0 0 0 0	42.2 42.2 42.2 127.0 0 0 0 0 0 0	1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	92.6
263-265	488 513 538 563 588 613 638 713 738 763 788 813 8863 888	47 30 36 8 15 8 15 2 4 1 2 1	381.0 189.0 160.0 28.6 75.0 77.9 85.8 7.1 25.0 3.6 7.1 3.6 7.1 3.6	37 25 33 8 13 6 12 2 3 1 2 1 2	131.0 88.8 117.0 28.6 46.2 21.3 42.6 7.1 10.6 3.6 7.1 3.6 7.1 3.6	843021301000000	115.0 57.6 43.2 0 28.8 14.4 43.2 0 0 0 0	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	42.2 42.2 0 0 0 42.2 0 0 0 0	000000000000000000000000000000000000000	92.6 0 0 0 0 0 0 0 0
265-267	488 513 538 563 588 613 638 713 738 763 788	32 16 25 8 10 9 11 4 6	146.0 89.4 316.0 105.0 36.0 43.0 50.0 14.2 32.2 14.2	29 13 19 6 10 8 10 4 5 4	103.0 46.2 67.4 21.3 36.0 28.6 36.0 14.2 17.8 14.2 3.6	3 3 2 0 0 1 1 0 1	43.2 43.2 28.8 0 0 14.4 0 14.4 0	0 0 3 2 0 0 0 0 0 0	0 0 127.0 84.4 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 92.6 0 0 0 0

(2 of 6 sheets)

TABLE 4.2 (CONTINUED)

	Collector	Area		Numbe	rs and W	eights c	of Missil	es in In	dicated	Size Cla	sses
Azimuthal	Radial	Total	Total	Clas	s 1	Clas	s 2	Clas	s 3	Clas	s 4
Bounds	Distance	Number of Missiles	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight
degrees	feet		pounds		pounds		pounds		pounds		pounds
265-267 (Cont'd)	813 838 863	1 4 2	3.6 25.0 7.1	1 3 2	3.6 10.6 7.1	0 1 0	0	0	0	0	0 0
	888	3	49.3	2	7.1	0	0	1	42.2	0	0
267-269	713 738 763	3 0 2	21.5 0 7.1	2 0 2	7.1 0 7.1	0 0	14.4	0 0	0	0 0	0
	788	1	3.6	1	3.6	0	0	0	0	0	0
	813 838	2	7.1	2	7.1	0	0	0	0	0	0
	863 888	3	49.3	2	7.1 3.6	0	0	1	42.2	0	0
269-271	713 738	1	3.6	1	3.6	0	0	0	0	0	0
	763 788	0	3.6	0	3.6	0	0	0	0	0	0
	813	0	3.6	0	3.6	0	0	0	0	0	0
	838 863 888	0	0	0	0	0	0	0	0	0	0
299-301	813 838	1 2	3.6 18.0	1	3.6 3.6	0	0	0	0	0	0
	863 888	7	102.0 39.4	5	17.8 10.6	0	28.8	0	84.4	0	0
	913	2	7.1	2	7.1	0	0	0	0	0	0
	938 963	6 10	32.2 46.4	5 9	17.8 32.0	1	14.4	0	0	0	0
	988 1,013	8 14	28.6 60.6	8	28.6 46.2	0	0	0	0	0	0
301-303	813 838	2	7.1 14.2	2	7.1 14.2	0	0	0	0	0	0
	863 888	7	24.9 32.0	7	24.9	0	0	0	0	0	0
	913 938	4	25.0	3	10.6	1	14.4	0	0	0	0
	963	7	24.9	7	24.9	0	0	0	0	0	0
	988 1,013	9 19	32.0 139.0	9 15	32.0 53.2	3	43.2	0	42.2	0	0
303-305	813 838	16	3.6	1 5	3.6 17.8	0	0	0	0	0	0
	863 888	8 13	39.3 57.0	7	24.9	1	14.4	0	0	0	0
	913	16	56.8	16	56.8	0	0	0	0	0	0
	938 963	16 15	56.8 64.1	16 14	56.8	0	14.4	0	0	0	0
	988 1,013	21 18	124.0 74.8	10 17	67.4	1	14.4	0	42.2	0	0
305-307	463 488	6	60.0	5	17.8 3.6	0	0	1 0	42.2	0	0
	513 538	1	3.6	1	3.6	0	0	0	0	0	0

(3 of 6 sheets)

TABLE 4.2 (CONTINUED)

	Collector	Area		Numbe	rs and W	eights o	of Missil	es in Ir	dicated	Size Cla	sses
Azimuthal Bounds	Radial	Total	Total	Clas	s 1	Clas	s 2	Clas	s 3	Clas	s 4
bounds	Distance	Number of Missiles	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight
degrees	feet		pounds		pounds		pounds		pounds		pounds
305-307 (Cont'd)	563 588 613 638 663 688 713 813 838 863 888 913 938 963 988	1 2 4 2 1 0 1 1 6 9 7 6 10 20 17	3.6 3.6 7.1 35.9 7.1 3.6 0 3.6 14.4 21.3 32.0 35.7 21.3 36.0 104.0 71.2	1 1 2 2 3 1 0 1 0 6 9 6 10 17 16	3.6 3.6 7.1 7.1 7.1 3.6 0 21.3 32.0 21.3 36.0 60.4 56.8	000000000000000000000000000000000000000	0 0 0 28.8 0 0 0 14.4 0 0 14.4	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0
307-309	463 488 513 588 613 638 663 663 813 813 863 888 913 938 963 988 1,013	4 2 0 0 0 0 11 15 4 6 0 2 1 8 6 4 5 9 7 1 2	14.2 7.1 0 0 0 82.5 75.0 14.2 32.2 0 18.0 3.6 117.0 32.2 35.9 17.8 43.0 24.9 42.6	4 2 0 0 0 0 0 7 13 4 5 0 1 1 5 5 2 5 8 7 2 7 1 2 7 1 8 7 1 7 1 7 1 2 7 1 7 1 7 1 7 1 7 1 7 1 7	14.2 7.1 0 0 0 24.9 46.2 14.2 17.8 0 3.6 3.6 17.8 17.8 28.6 24.9 42.6	000000000000000000000000000000000000000	0 0 0 0 0 57.6 28.8 0 14.4 0 14.4 14.4 14.4 14.4	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
309-311	463 488 513 538 563 588 613 638 663 688 713 813 813 863 888 913 938 963 988 1,013	3 2 1 0 0 9 15 9 7 0 1 4 6 5 2 3 0 3 7	10.6 7.1 3.6 0 0 53.7 85.8 43.0 24.9 0 14.4 14.2 32.2 17.8 7.1 10.6 0 10.6 114.0	3210000712870045523036	10.6 7.1 3.6 0 0 24.9 42.6 28.6 24.9 0 14.2 17.8 7.1 10.6 0 10.6 21.3	000000000000000000000000000000000000000	0 0 0 0 28.8 43.2 14.4 0 0 14.4 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

(4 of 6 sheets)

TABLE 4.2 (CONTINUED)

	Collector	Area		Numbe	rs and W	eights o	f Missil	es in In	dicated	Size Cla	sses
Azimuthal Bounds	Radial Distance	Total Number of	Total Weight	Clas	ss 1	Clas	s 2	Clas	s 3	Clas	s 4
	produce	Missiles	"CISTO	Number	Weight	Number	Weight	Number	Weight	Number	Weight
degrees	feet		pounds		pounds		pounds		pounds		pounds
311-313	463	3	10.6	3	10.6	0	0	0	0	0	0
	488	8	39.3	7	24.9	1	14.4	0	0	0	0
	513	3	32.4	1	3.6	2	28.8	0	0	0	0
	538	0	0	0	0	0	0	0	0	0	0
	563	1	3.6	1	3.6	0	0	0	0	0	0
	588	1	14.4	0	0	1	14.4	0	0	0	0
	613	0	0	0	0	0	0	0	0	0	0
	638	0	0	0	0	0	0	0	0	0	0
	663	14	71.4	12	42.6	2	28.8	0	0	0	0
	688	19	100.0	16	56.8	3	43.2	0	0	0	0
	713	0	0	0	0	0	0	0	0	0	0
212 215	1,60	0	7 1	0	7 1	0	0	_	0	0	0
313-315	463	2	7.1	2	7.1	0	0	0	0	0	0
	488	1	3.6	1	3.6	0	0	0	0	0	0
	513	0	0	0	0	0	0	0	0	0	0
	538	1	3.6	1	3.6	0	0	0	0	0	0
	563	1	3.6	1	3.6	0	0	0	0	0	0
	588	3	49.3	2	7.1	0	0	1	42.2	0	0
	613	6	21.3	6	21.3	0	0	0	0	0	0
	638	10	46.4	9	32.0	1	14.4	0	0	0	0
	663	14	82.3	11	39.1	3	43.2	0	0	0	0
	688	4	14.2	4	14.2	0	0	0	0	0	0
	713	0	0	0	0	0	0	0	0	0	0
315-317	463	1	3.6	1	3.6	0	0	0	0	0	0
5-7 5-1	488	8	28.6	8	28.6	0	0	0	0	0	0
	513	1	42.2	0	.0	0	0	1	42.2	0	0
	538	2	7.1	2	7.1	0	0	ō	0	0	0
	563	0	0	0	0	0	0	0	0	0	0
	588	5	17.8	5	17.8	0	0	0	0	0	0
	613	6	21.3	6	21.3	0	0	0	0	0	0
	638	12	53.5	11	39.1	1	14.4	0	0	0	0
	663	12	53.5	11	39.1	ī	14.4	0	0	0	0
	688	13	57.0	12	42.6	ī	14.4	O	Ö	0	0
	713	0	0	0	0	Ō	0	0	0	0	0
317-319	463	0	0	0	0	0	0	0	0	0	0
3-1-3-7	488	0	0	0	0	0	0	0	0	0	0
	513	0	0	0		0	0	0	0	0	0
	538	0	0	0	0	0	0	0		0	0
	563	2	7.1		0	0			0		
	588	4	14.2	2	7.1	0	0	0	0	0	0
	613	6		6			0		0	0	0
	638	16	21.3 56.8	16	21.3 56.8	0	0	0	0	0	0
	663	10				0	0	0	0	0	0
	688	8	28.6	8	28.6	0	0	0	0	0	0
	713	7	35.7	6	21.3	1	14.4	0	0	0	0
010 000											
319-321	463 488	1	3.6	1	3.6	0	0	0	0	0	0
	513	i	3.6	1	3.6	0	0	0	0	0	0
	538	2	7.1	2	7.1	0	0	0	0	0	0
	563	1	3.6	1	3.6	0	0	0		0	
	588	1	3.6	1	3.6	0	0	0	0	0	0
	613	8	28.6	8	28.6	0	0	0	0	0	0
	013	0	20.0	0	20.0	U	U	U	U	U	U

TABLE 4.2 (CONCLUDED)

	Collector	Area		Numbe	ers and W	eights c	of Missil	es in In	dicated	Size Cla	isses
Azimuthal	Radial Distance	Total Number of	Total	Clas	ss 1	Clas	ss 2	Clas	ss 3	Clas	ss 4
Bounds	Distance	Missiles	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight
degrees	feet		pounds		pounds		pounds		pounds		pounds
319-321	638	10	46.4	9	32.0	1	14.4	0	0	0	0
(Cont'd)	663	1	3.6	1	3.6	0	0	0	0	0	0
	688	1	3.6	1	3.6	0	0	0	0	0	0
	713	0	0	0	0	0	0	0	0	0	0
321-323	463	1	14.4	0	0	1	14.4	0	0	0	0
	488	l	3.6	1	3.6	0	0	0	0	0	0
	513	2	7.1	2	7.1	0	0	0	0	0	0
	538	1	3.6	1	3.6	0	0	0	0	0	0
	563	1	3.6	1	3.6	0	0	0	0	0	0
	588	1	3.6	1	3.6	0	0	0	0	0	0
	613	0	0	0	0	0	0	0	0	0	0
	638	4	14.2	4	14.2	0	0	0	0	0	0
	663	1	3.6	1	3.6	0	0	0	0	0	0
	688	3	21.5	2	7.1	1	14.4	0	0	0	0
	713	0	.0	0	0	0	0	0	0	0	0
323-325	463	4	35.9	2	7.1	2	28.8	0	0	0	0
	488	0	0	0	0	0	0	0	0	0	0
	513	1	3.6	1	3.6	0	0	0	0	0	0
	538	1	3.6	1	3.6	0	0	0	0	0	0
	563	0	0	0	0	0	0	0	0	0	0
	588	1	3.6	1	3.6	0	0	0	0	0	0
	613	2	7.1	2	7.1	0	0	0	0	0	0
	638	10	118.0	5	17.8	4	57.6	1	42.2	0	0
	663	6	32.2	5	17.8	1	14.4	0	0	0	0
	688	7	46.6	5	17.8	2	28.8	0	0	0	0
	713	0	0	0	0	0	0	0	0	0	0

EJECTA DISTRIBUTION BY SIZE AS A FUNCTION OF RANGE TABLE 4.3

			Weight and	Percentage	e of Missil	es in Indi	cated Size	Classes	
	4	Cla	58 1	Cla	N 20	Cla	e	Cla	the second
Kange	Iotal Ejecta Weight	Weight	Percent	Weight	Percent	Weight	Percent	Weight	Percent
feet	spunod	spunod		spunod		spunod		spunod	
463	160.0	9.47	9.94	m	-	a	9	0	0
1,88	•	653.0	43.2	461.0	30.5	211.0	14.0	185.2	12.3
513		504.3	39.3	-	3	3	0	92	7.2
538	,014.	443.9	43.8	6	i	60	9	5	
563	597	256.0	42.9	0	-	17	5	0	0
588		253.3	48.4	0	0	60	i	0	0
613		320.2	51.6	0	7	+	·	0	0
638		473.0	55.0	a	5	+		0	0
663		224.3	66.1	5	3	0	0	0	0
688		209.7	61.8	0	00	0	0	0	0
713		4.09	58.3	0	-	0	0	0	0
738		56.8	56.8	3	3	0	0	0	0
763		24.6	100.0	0	0	0	0	0	0
788		2.19	0.19	3	0	0	0	0	0
813		78.4	64.52	43.8	35.5	0	0	0	0
838		0.96	62.5	-	-	0	0	0	0
863		195.6	42.1	-	i	211.0	45.5	0	0
888		220.6	62.0	CV.	-	a	i	0	0
913		110.0	9.69	-	-	0	0	0	0
938		138.5	9.06	7	0	0	0	0	0
963		171.2	79.9	3	0		0	0	0
988		223.9	2.69	-		75.2	13.0		0
1,013		280.5	6.55	0	-	a		95.6	18.5

a Distance from ground zero.

TABLE 4.4 SPHERICAL MISSILE PERFORMANCE

Each sphere is ranked by distance traveled relative to distance traveled by other spheres in the same package. The missile that traveled farthest is ranked 1.

Missile	Ra	ange Ranl	k/Number	of Miss	iles Rec	overed P	er Packag	ge
Package No.		1-Inch S	Spheres			2-Inch	Spheres	
	Pa	А	S	L	P	А	S	L
143			2/2			1/2		
153	1/2	2/2						
161	2/3	3/3	1/3					
163	2/5	1/5	5/5		3/5	4/5		
171			2/2				1/2	
181	3/8	2/8	4/8	7/8	8/8	5/8	1/8	6/8
233						2/2	1/2	
241		2/2				1/2		
243		4/4	2/4		1/4	3/4		
253						1/2	2/2	
263		1/3	3/3				2/3	
281			2/3			1/3	3/3	
341			3/3			1/3	2/3	
351		3/3				1/3	2/3	
371		3/3				2/3	1/3	
381			2/4			1/4	4/4	3/4

a Key: P-plastic, A-aluminum, S-steel, L-lead.

TABLE 4.5 CYLINDRICAL MISSILE PERFORMANCE

Range	No. Times :	in Rank/No. Po	ssibilities fo	or Poorer Per	formanceb
Rank ^a	1/4-Wedge Section	1/2-Wedge Section	l-Inch Cylinder	2-Inch Cylinder	4-Inch Cylinder
1	8/27	5/26	8/29	12/28	11/32
2	8/22	12/19	13/24	7/24	5/25
3	8/15	6/13	4/18	6/17	8/15
1	2/6	1/6	4/6	3/6	5/6

^a Each cylinder or cylindrical section was ranked by the distance traveled relative to the distance traveled by the other cylinders or cylindrical sections from the same package. The two 1/4-wedge sections in each cylinder package were both ranked, if both were recovered.

b Number of times any missile of indicated size/shape category was ranked in indicated position divided by the number of possibilities for poorer performance for all the missiles recovered of indicated size/shape category.

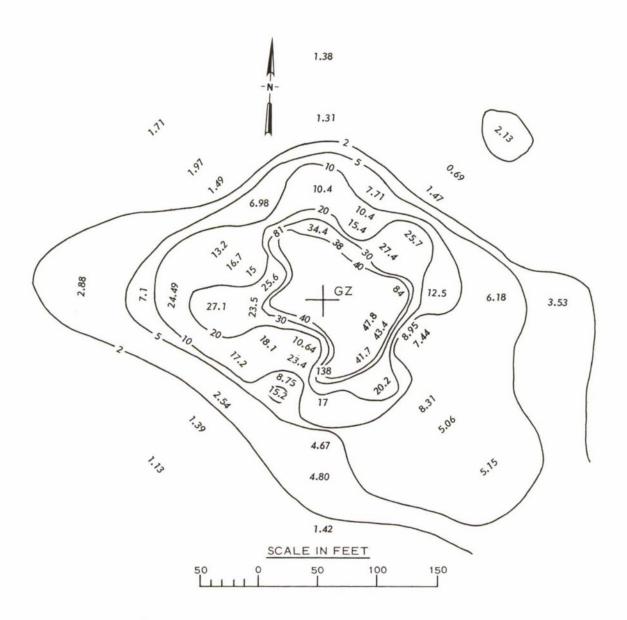


Figure 4.1 Ejecta areal mass density contours in and adjacent to the crater lip. Spot densities and contours are in pounds per square foot.

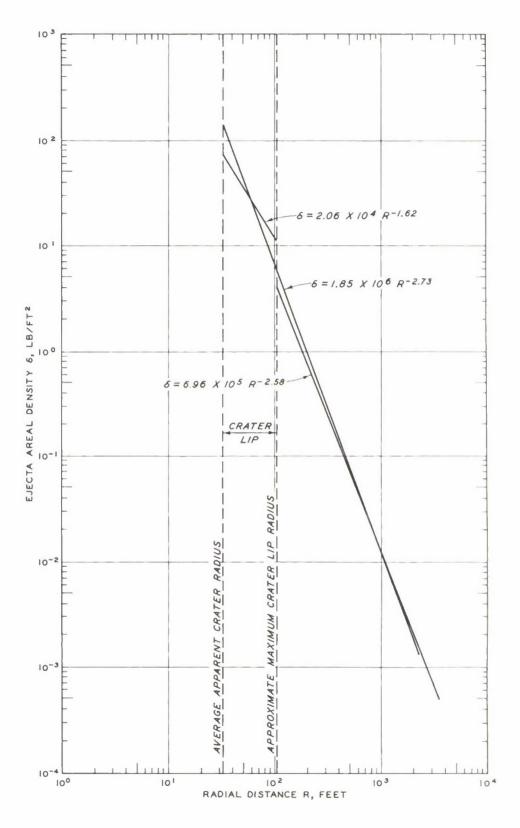
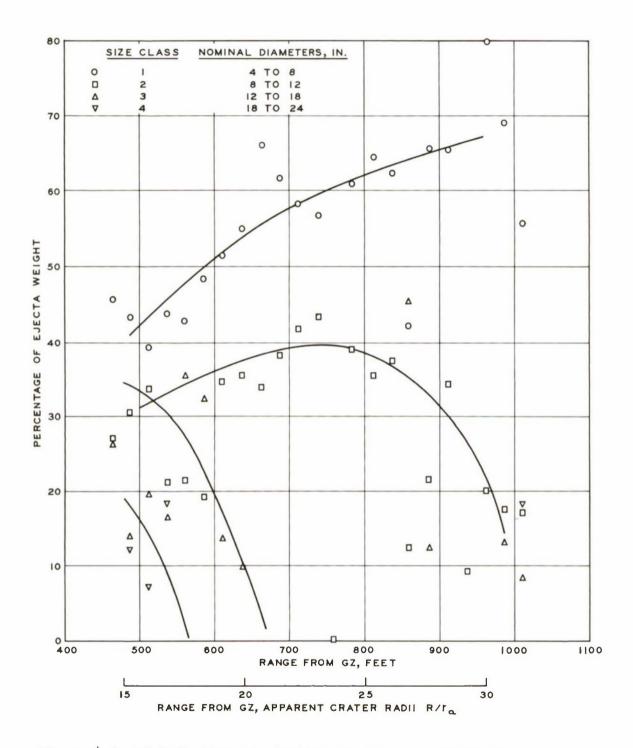
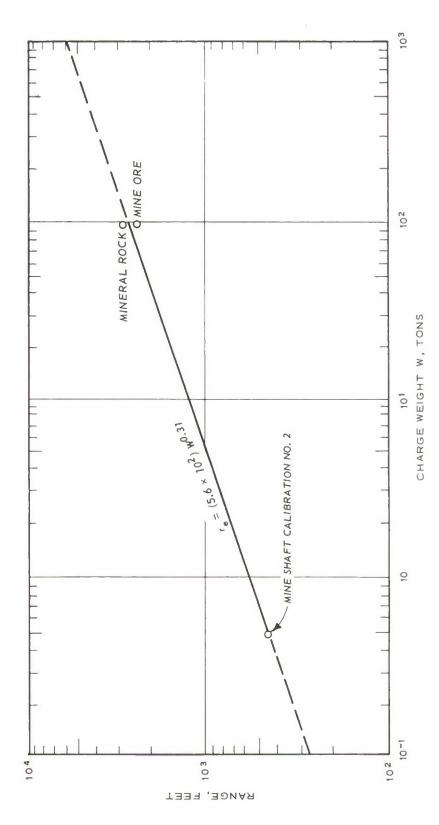
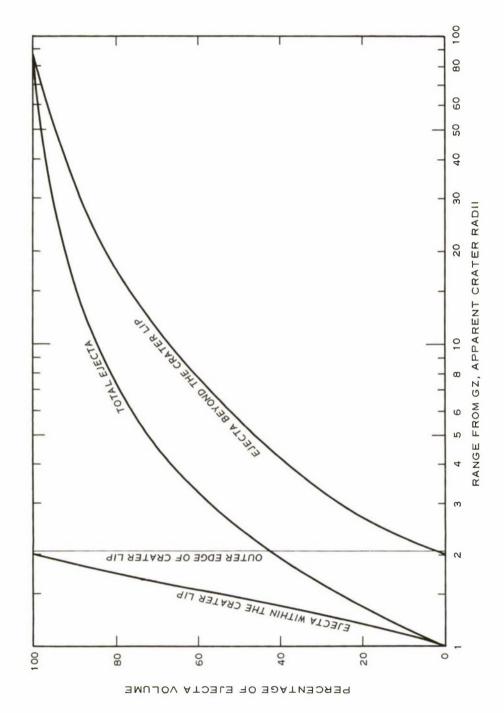
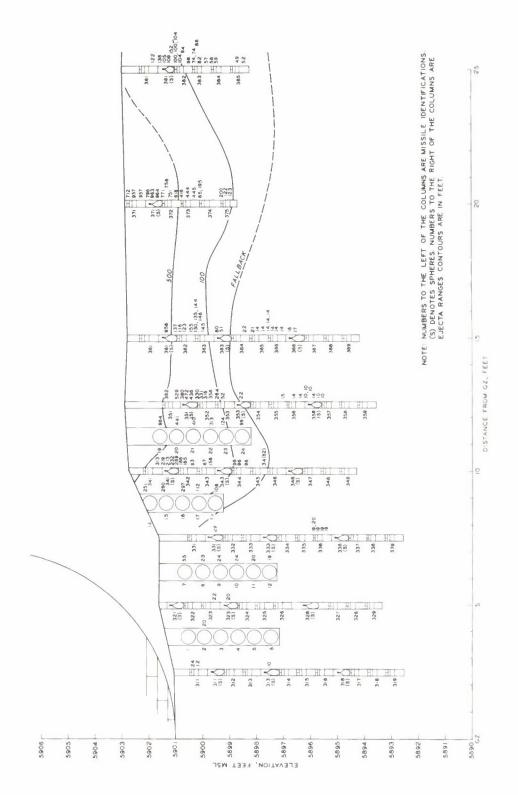
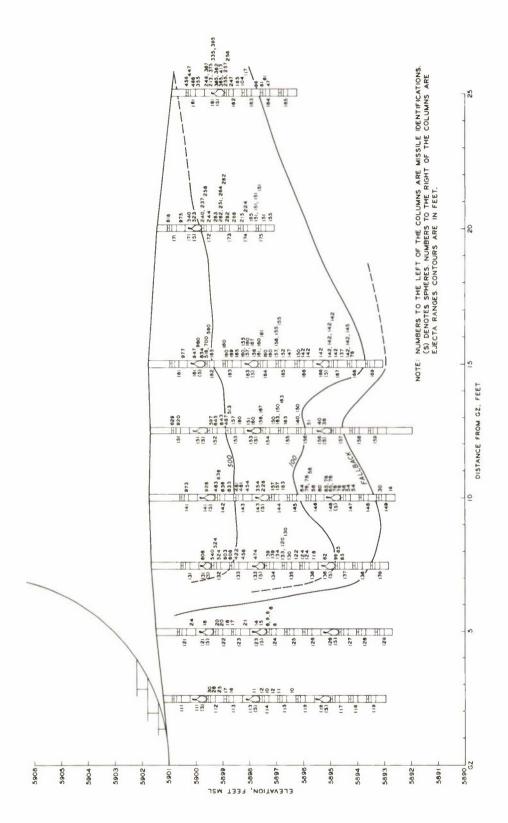
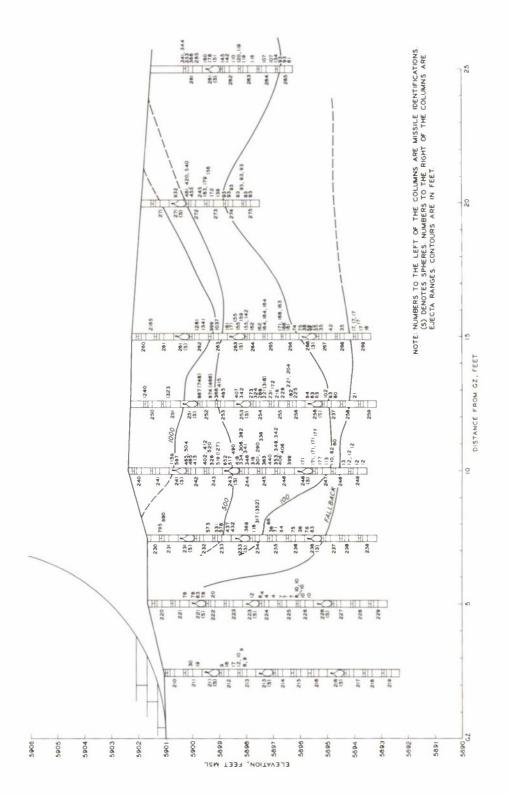


Figure 4.2 Ejecta mass density versus range.


Figure 4.3 Distribution of missiles by size as a function of range from GZ.


for Mine Shaft Events (HOB = 0.9 charge radius). E U Maximum missile ranges Figure 4.4


Percentage of ejecta volume (or weight) as a function of range from GZ. Figure 4.5

40 prior 5 shown Topography north radial ON missiles artificial for Range contours grouting around charge. 9.4 Figure

Topography shown is prior to Range contours for artificial missiles on south radial. grouting around charge. Figure 4.7

Topography shown is prior to Range contours for artificial missiles on west radial. grouting around charge. Figure 4.8

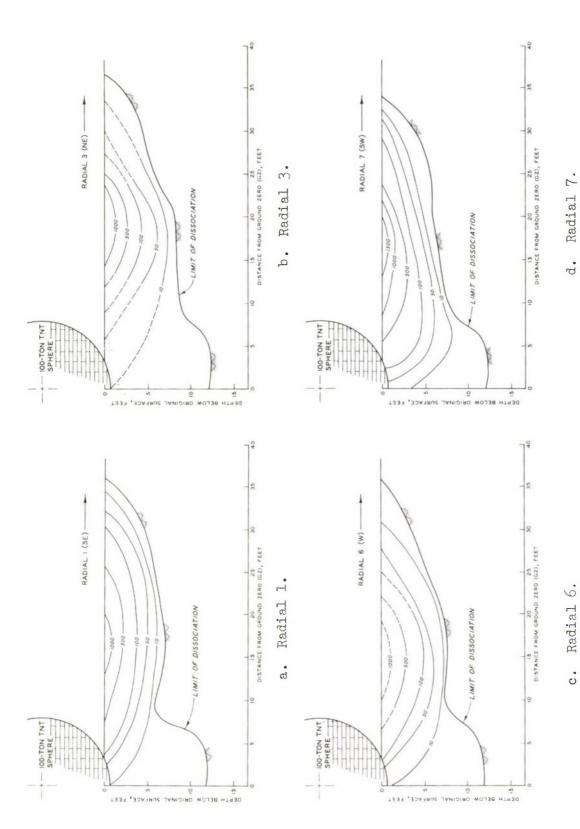


Figure 4.9 Contours of mean horizontal displacement of rock dissociated along radials of grout Contour intervals indicated ranges (in feet) at which fragments were deposited, measured from their points of origin. columns.

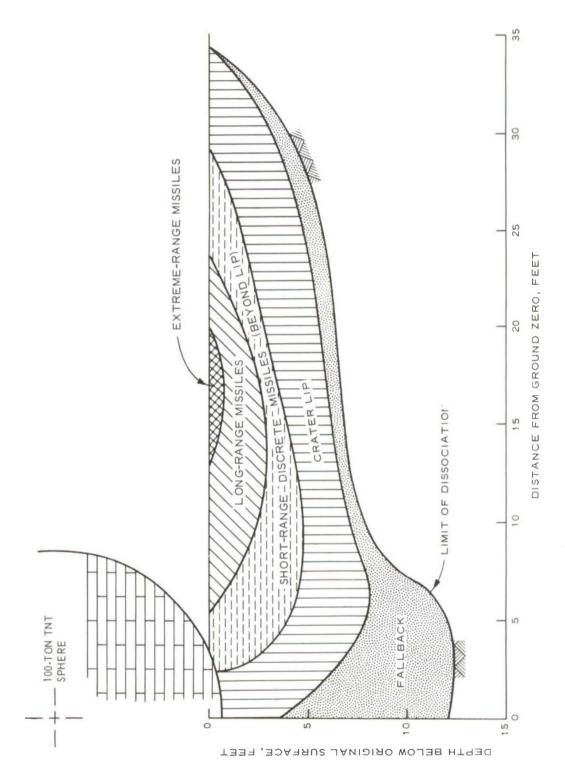
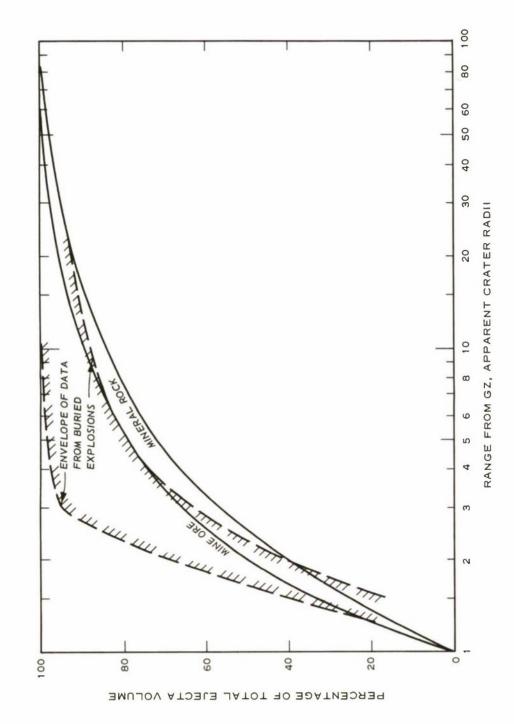



Figure 4.10 Zones of origin of crater and ejecta debris.

Comparison of ejecta distribution with range for Mineral Rock, Mine Ore, Figure h.11 Comparison and buried explosions.

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

The Mine Ore and Mineral Rock Events provided good information on ejecta areal density and distribution for this medium and shot geometry, but left some basic questions unanswered regarding reproducibility of crater ejecta data. The volume of ejected material in Mineral Rock was much greater than was predicted based on Mine Ore data. Proximity of the two GZ's and possible disturbance of the rock mass in the region of the Mineral Rock crater caused by the Mine Ore blast should be considered as a reason for the discrepancy. The failure of the ejecta sampling procedure to indicate the increase in ejecta determined by the crater volumetric analysis reflects the inadequate circumferential coverage of the aerial photography and its inability to account for particles smaller than 4 inches in diameter. In spite of this, the concept of the Mineral Rock experiment and the methodology developed for the event were sound.

The crater regions contributing to various ejecta volumes and distances were satisfactorily defined for the Mine Ore/Mineral Rock shot geometry, and good agreement was noted between the two events. These regions were also relatively the same as those observed for surface bursts in soil.

By using artificial missile experiments, ejecta photography (Reference 14), and impact data obtained for natural missiles, it would be possible to reconstruct the major portion of the ejecta terminal trajectories for Mineral Rock and to include tentative values for ballistic and drag coefficients. Although such a study is beyond the scope of this report, if this terminal trajectory data were to be considered with the size distribution data already developed for Mineral Rock, the hazards to personnel and structures associated with the Mineral Rock shot geometry could probably be quantified. Smaller particles (in this case, 4 to 8 inches) would tend to dominate the ejecta field beyond distances of 25 to 30 crater radii from GZ, as has been observed on

surveys of the ejecta field periphery.

Volumetric analysis pointed up some discrepancies between the crater and ejecta studies. Analysis of the ejecta sampling indicated that 230 yd³ of in situ material was ejected, a figure that appears too low when compared with the crater volume. About 90 yd³ (in situ) was deposited in the crater lip.

In future experiments, a factor of $W^{0.3}$ should suffice for scaling maximum ejecta range $r_{\rm e}$ between charge weights for this and closely similar shot geometries in rock. Thus,

$$\frac{r_{e_1}}{r_{e_2}} = \left(\frac{W_1}{W_2}\right)^{0.3}$$

where the subscripts 1 and 2 denote different experiments. Presumably, the 0.3 exponent will decrease with increasing burial depth.

5.2 RECOMMENDATIONS

Aerial photography should be continued as a means of obtaining ejecta measurements in rock, and efforts should be made toward its refinement. Specifically, improvements in identification and resolution of ejecta particles and in determination of the height dimension should be sought in addition to improvements in film and camera quality, flight techniques, and survey control. Color, infrared, and stereophotography should be considered in future experiments. Due to economic considerations and due also to the uncertainty of the results, the use of such photography was not justified for Mineral Rock, but improved technology may change this. If aerial photography cannot be refined so as to permit counting of smaller particles (e.g., 1- or 2-inch-diameter samples), it will become necessary to supplement the photography with ground sampling to obtain an estimate of total ejecta. Count-and-weigh sectors have been successfully employed for such sampling. However, the use of small collector trays for this purpose is not recommended, since the effort associated with the technique is disproportinate

to the results that can be obtained.

In future ejecta measurement experiments, the entire debris field should be photographically documented. Once this has been done, an adequate sample can probably be obtained through careful selection of counting areas, thus minimizing the cost associated with the time-consuming task of counting individual particles. Here again, the experimenter should be ever alert to technological advances such as optical scanning techniques. As with other crater measurements, it would be prudent to obtain good photographic records of ejecta fields for all large detonations, regardless of whether any immediate use of the data is anticipated.

Use of collector areas in and adjacent to the crater lip should be continued for explosions in cohesive material, where it is necessary to obtain quantitative data. For this particular shot geometry in rock, however, future sampling could be reduced, since good agreement was obtained for the weight of ejecta deposited in the Mine Ore and Mineral Rock crater lips.

Future sampling of ejecta fields, especially in the discontinuous region, must also include data on the <u>statistics</u> of particle fragmentation. This aspect of the Mineral Rock experiment provided some of the most useful information. Additional data are needed on an expanded range of rock sizes and for additional locations in the ejecta field.

Analysis of the artificial missile data should be undertaken at an early date to determine what was learned about the ballistics of ejected material. Additionally, comparison of the Mine Shaft ejecta data with results of theoretically oriented approaches appears promising. Some progress has been made on mathematical modeling of ejecta resulting from buried explosions (Reference 15), and it is recommended that correlation of theoretical and experimental observations be considered a priority item in cratering research.

APPENDIX A

AERIAL PHOTOGRAPHY EJECTA COUNT

The aerial photography of the Mineral Rock ejecta field was accomplished by Teledyne Geotronics, Inc., 725 East Third Street, Long Beach, California, under contract to the WES. This contract called for preshot and postshot photography of the test area and analysis of the results. Tables A.1 through A.8 are computer printouts showing the ejecta particle count for the eight useable photographs that were obtained, including size classifications and locations of natural missiles. The smallest identifiable particle was 4 inches in diameter. Coordinates (in feet) were based upon an assumed set of GZ coordinates. The size classifications applicable to all tables are given below.

Classification	Size Range		
Code	(Diameter)		
1 2 3 4 5	inches 4 to 8 >8 to 12 >12 to 18 >18 to 24 >24 to 36		

TABLE A.1 EJECTA DATA FROM PHOTOGRAPH NO. 73

TOTAL NUMBER OF PARTICLES COUNTED - 25.

COORDINATES ARE IN FEET RELATIVE TO GZ. NEGATIVE COORDINATES ARE SOUTH AND/OR WEST OF GZ.

SIZE CLASS	COORDI NORTHING		SIZE CLASS	COORDI NORTHING	
1 1 1 1 1 1 1	562.365 529.419 544.917 608.688 716.580 655.008 619.686 544.868	-254.587 -208.551 -192.661 -148.811 -91.629 -103.963 -101.784 -97.370	1 1 1 1 1 1	575.914 526.523 534.156 717.629 677.970 651.816 611.335 605.613	-226.032 -209.387 -144.298 -93.469 -99.231 -104.592 -96.550 -64.704
î	719.314	-72.888	2	560.377	-246.064
2	569.968	-257.631	2	602.150	-225.165
2	590.957	-212.727	2	563.792	-100.879
2	616.638	-176.121	3	644.204	-147.830
5	557.454	-151.076			

TABLE A.2 EJECTA DATA FROM PHOTOGRAPH NO. 74

TOTAL NUMBER OF PARTICLES COUNTED - 6.

COORDINATES ARE IN FEET RELATIVE TO GZ. NEGATIVE COORDINATES ARE SOUTH AND/OR WEST OF GZ.

SIZE COORDINATES		SIZE	COORDINATES		
CLASS	NORTHING	EASTING	CLASS	NORTHING	EASTING
1	839.385	-161-830	1	810.078	-141.740
1	782-137	-166-135	1	812.137	-116.079
1	817.261	-116.260	1	875.314	-62.330

TABLE A.3 EJECTA DATA FROM PHOTOGRAPH NO. 81

TOTAL NUMBER OF PARTICLES COUNTED - 1050.

COORDINATES ARE IN FEET RELATIVE TO GZ. NEGATIVE COORDINATES ARE SOUTH AND/OR WEST OF GZ.

	COURAIL			COORDIA	
CLASS	NORTHING	EASTING	CLASS	NORTHING	EASTING
			and a great war.	17 505	474 675
1	-12,312	-465.480	1	-13.505	-474.062
1	-18.,1)	-480.061	1	-30.599	-486.327
1	-29.293	-484.897	1	-25.895	-403.062
1	-28,130	-479.855	1	-27.775	-480.333
1	-26,491)	-480,293	1	-25.490	-477.982
1	-26.8/2	-475.598	1	-23.861	-467.489
1	-31.397	-471.455	1	-31.053	-475.282
1	-33.178	-477.896	1	-32.900	-482.319
1	-33.638	-433.422	1	-34.755	-463.113
1	-36,625	-484.381	1	-39.030	-454.151
1	-40.927	-483.650	1	-41.050	-484.035
1	-47.662	-484.572	1	-48.217	-479.783
1	-47,152	-430.697	1	-45.150	-473.910
1	-45,193	-470.165	1	-44.392	-479.131
1	-40,783	-478.246	1	-40.841	-478.703
1	-36,997	-478.102	1	-39.600	-4/5.503
1	-37.743	-474.396	1	-37.419	-470.317
1	-37.881	-470:361	1	-35.151	-465.578
1	-38.665	-465.195	1	-42.413	-403.152
1	-45.113	-454.632	1	-37.768	-449.518
1	-49.816	-451.981	1	-47.516	-458.464
1	-48.434	-457.944	1	-49.509	-459.526
1	-47.511	-461.309	1	-53.119	-403.563
1	-50.443	-465.979	1	-47.565	-467.564
1	-51.597	-472.213	1	-511.299	-472.709
1	-47,304	-471.780	1	-44.713	-4/2.855
1	-42.365	-475.057	1	-44.266	-4.75.814
1	-48.044	-476.221	1	-52.255	-475.227
1	-54.267	-475.033	1	-55.261	-477.945
1	-61.06	-482.608	1	-65.441	-482.835
1	-67. 17.4	-482.846	1	-67.747	-479.513
1	-05.565	-479.798	1	-60.665	-1/8.117
I	-57.762	-476.341	1	-58.233	-4/4.137
1	-29.044	-475.241	1	-64.438	-4/2.999
			-		

TABLE A.3 EJECTA DATA FROM PHOTOGRAPH NO. 81 (CONTINUED)

SIZE COORDINATES SIZE COORDINATES CLASS NORTHING EASTING 1 -/2.451 -470.987 1 -70.586 -471.539 1 -68.356 -471.539 1 -66.634 -468.289 1 -60.425 -468.726 1 -59.705 -469.944	
1 -/2,451 -470.987 1 -70.586 -471,539 1 -68,356 -471.539 1 -66.634 -468,289	
1 -68,356 -471.539 1 -66.634 -468,289	
1 -68,356 -471.539 1 -66.634 -468,289	
1 "U112 "TUU,/20 1 "U7,/00 TU7,744	
1 -58,774 -471.446 1 -54.645 -469,349	
1 -56,205 -467.898 1 -56.561 -466.232	
1 -55,414 -465.640 1 -56.045 -465.003	
1 -58,441 -463.476 1 -56.341 -463.355	
1 -55,064 -463.312 1 -54,059 -462,060	
1 -54,473 -461.939 1 -55.089 -461.854	
1 -57,626 -461.025 1 -60.381 -460.953	
1 -54,061 -456,163 1 -55.532 -455,900	
1 -55,662 -455.059 1 -58,323 -453.041	
1 -60,671 -454,895 1 -62,414 -451,546	
1 -65,219 -449,774 1 -65,525 -448,501	
1 -67, 043 -454.131 1 -74.657 -456.586	
1 -72,181 -457.996 1 -71.515 -456.246	
1 -70,397 -457,169 1 -69,604 -456,396	
1 -68,134 -458.142 1 -66.224 -464.206	
1 -67.102 -464.402 1 -72.198 -465.193	
1 -75,576 -462,113 1 -77,311 -458,232	
1 -70.698 -445.895 1 -73.416 -445.010	
1 -75,522 -445,781 1 -78,691 -444,057	
1 -81,402 -447.103 1 -81.369 -449.141	
1 -85,113 -447.435 1 -86.803 -447,563	
1 -88,327 -443,401 1 -97.311 -444,326	
1 -94,918 -446.050 1 -100.379 -448,866	
1 -91,639 -449.207 1 -94.691 -452.046	
1 -100,365 -454.823 1 -97.156 -456.478	
1 -96,228 -457.513 1 -90.124 -455.377	
1 -90,937 -452,980 1 -89,076 -452,181	
1 -87,282 -453,307 1 -84,599 -455,582	
1 -83,616 -455,953 1 -80,791 -458,106	
1 -83,213 -466.094 1 -83.353 -469.642 1 -82,197 -471.047 1 -73.379 -478.140	
1 -73.863 -478.330 1 -76.555 -481.801	
1 -/7,607 -482.053 1 -79.046 -482.012	
1 -79.465 -480.573 1 -77.361 -479.695	
1 -83,150 -482,603 1 -87,183 -475,087	
1 -91.157 -480.972 1 -94.498 -477.760	
1 -95,498 -477,999 1 -102.535 -480.017	
1 -101.541 -476.192 1 -100.468 -472.182	

TABLE A.3 EJECTA DATA FROM PHOTOGRAPH NO. 81 (CONTINUED)

SIZE	COORDI	VATES	SIZE	COORDI	NATES
CLASS	NORTHING	FASTING	CLASS	NORTHING	EASTING
	00-454	475 704			474 484
1	-98.656	-475.304	1	98.106	-474.054
1	-97,490	-473.535	1	-97.473	-473,203
1	-97.418	-472,667	1	-91.038	-472.388
1	-92,654	-469.493	1	-92.641	-465,893
1	-97,851	-462.384	1	-96.461	*405,425
1	-95,852	-469.183	1	-98.073	-468.076
1	-101,941	-468,220	1	-103.665	-462.936
1	-112.683	-467.605	1	-114.803	-464.011
1	-115,086	-471.649	1	-112.836	-472,975
1	-110,573	-472.269	1	-109.125	-472.854
1	*109,560	-473.452	1	-110.345	-475,655
1	-109,747	-476.565	1	-110.321	-478.014
1	-110.886	-476.258	1	-111.779	476.468
1	-117,129	-474,470	1	-119.733	-471,543
1	-125,942	-471.569	1	-121.143	-468,145
1	-121.922	-463.718	1	-123,361	-456,886
1	-117,081	-456,725	1	-115.345	-454,375
1	-111.129	-450.897	1	-105.113	-448.330
1	-108,769	-443,601	1	-117,065	-446.990
1	-127,893	-444.951	1	-139.980	-448.395
1	-143.065	-452.354	1	-143,635	-453,437
1	-151.428	-464.913	1	-157.299	-466,351
1	-160.040	-442.101	1	-171,981	-461,153
1	-179,196	-472.860	1	-181.746	-471,392
1	-183,426	-472,057	1	-208.474	-462,627
1	-195,614	-477.152	1	-202.063	-482,099
1	-195.871	-485.263	1	-196.193	-488,194
1	-191.091	-486.587	1	-191.994	-482,779
1	-190.641	-483.520	1	-188.427	-482,990
1	-183,475	-484.024	1	-182.772	-484,024
1	-182,907	-483,509	11	-177.733	-481,769
1	-182,165	-488.920	1	-172.744	-483,393
1	-167,883	-485.776	1	-156.416	-489,548
1	-163.098	-497.298	1	-162.449	-495.307
1	-167,077	-493.338	1	-182.363	-510.805
1	-188,543	-506.852	1	-197.493	-499,332
1	-207.944	-497.661	1	-198.260	-519,309
	-196,802	-521.091		-190.967	-520,305
1	-164.898	-518,472	1	-155.357	-509,448
	-153.813	-508.667	1	-146.865	-502.094
1	-145,813	-500.958	1	-138.530	-490.615

TABLE A.3 EJECTA DATA FROM PHOTOGRAPH NO. 81 (CONTINUED)

SIZE	COORDI	NATES	SIZE	COORDI	MATES	
CLASS	NORTHING	FASTING	CLASS	NOPTHING	EASTING	8
		,				
1	-129,924	-488.502	1	-125.233	-484.972	•
1	-108,862	-482.514	1	-104.769	-482.231	
1	-110.136	-491,755	1	-115.006	-491.045	
1	-115,272	-492.896	1	-117.275	-490.897	
1	-126,782	-493,990	1	-136.222	-522,531	
1	-132,576	-522.271	1	-129.782	-525.212	
1	-124,855	-526.725	1	-119.113	-528.210	
1	-118,813	-523.944	1	-113.500	-529,073	
1	-112,334	-524.338	1	-108.016	-513.974	
1	-106,541	-501.742	1	-106.443	-506,742	
1	-104,466	-510.679	1	-101.593.	-511.257	
1	-95,121	-517.813	1	-103.362	-524,370	
1	-104,993	-529.360	1	-90.240	-530.708	
1	-89,893	-530.887	1	-88.920	-530,057	
1	-89,751	-528,675	1	-90.475	-526,529	
1	-88,251	-526.161	1	-86.809	-529,356	
1	-85.517	-528.991	1	-83.161	-527.110	
1	-80,423	-529.609	1	-80.272	-530.155	
1	-76,173	-530.136	1	-75.614	-529,481	
1	-69,255	-530.705	1	-67.970	-531,689	
1	-62.036	-531.739	1	-59.284	-531,866	
1	-66,677	-527.379	1	-60.439	-518,860	
1	-64,280	-517.892	1	-63.804	-520.109	
1	-69,458	-519.238	1	-71.255	-518.774	
1	-73,417	-519.823	1	-73.589	-520,232	
1	-74.285	-520.598	1	-85.063	-521.731	
1	-82,428	-518.785	1	-80.323	-516,480	
1	-77,191	-516.041	1	-79.640	-514,226	
1	-88,315	-515,783	1	-90.957	-510,600	
1	-92.046	-507.812	1	-91.710	-507.261	
1	-91,761	-505,227	1	-92.293	-506,045	
1	-93,202	-507.782	1	-93.920	-509,095	
1	-95,314	-507.322	1	-94.393	-505.877	
1	-59,898	-501.673	1	-99.749	-506,769	
1	-100.500	-505.913	1	-102.000	-502.022	
1	-99,131	-503.169	1	-98.277	-501.781	
1	-97,669	-500.237	1	-98.239	-497,613	
1	-97.736	-498.072	1	-95.244	-501.155	
1	-94.096	-501.313	1	-92.358	-503,189	
1	-86,609	-505,669	1	-86.509	-504,232	
1	-85, 059	-503.726	1	-81.266	-503.830	

TABLE A.3 EJECTA DATA FROM PHOTOGRAPH NO. 81 (CONTINUED)

SIZE	COORDI	NATES	SIZE	COORDI	NATES
CLASS	NORTHING	FASTING	CLASS	NOPTHING	EASTING
1	-80.239	-503.850	1	-80.383	-506,824
1	-69,007	-512.520	1	-66,520	-512.822
1	-67,110	-514.129	1	-65,955	-514,553
1	-65,330	-515.255	1	-63.941	-516.555
1	-62,005	-514.745	1	-60.018	-515.505
1	-58,539	-516.615	1	-60.500	-513.297
1	-57,532	-512.666	1	-60.632	-509.188
1	-56.466	-498,505	1	-58,095	-498.521
1	-59,882	-501.686	1	-63.223	-505.769
1	-65,438	-506.966	1	-67.370	-507,890
1	-69,925	-508.546	1	-71.694	-505.737
1	-72,943	-504.312	1	-71.822	-504,221
1	-68,630	-503.081	1	-63,507	-500.470
1	-66.195	-501.383	1	-66.384	-499.671
1	-66,492	-498,101	1	-71.610	-500.062
1	-73.542	-501.570	1	-73,669	-501.312
1	-/4,721	-500.539	1	-76.521	-500,811
1	-77,488	-499.075	1	-79.077	-497,715
1	-80,549 -85,070	-496.494	1	-83.065	~500,560 -495,974
1	-85,070	-500.104	1	-86.287	-495,934 -494,450
1	-87,906 -101,207	-495,170 -490,411	1	-91.491 -102.809	-490.500
1	-102.707	-487.678	1	-104.771	-486.973
1	-95,218	-484.879	1	-94.944	-483.702
1	-75,367	-487.356	1	-77.695	-486,939
1	-78.476	-487.562	1	-80.834	-487.399
$-\hat{1}$	-80.925	-488.549	ī	-78.923	-490.387
1	-/8.736	-491.053	1	-78.386	-490.617
i	-77,334	-490.567	- î	-75.921	-493.743
1	-74,796	-491.288	1	-73.917	-492.612
-i	-72.586	-493.417	î	-71.174	-495.030
1	-70.078	-495.673	1	-69.167	-496.792
1	-/2.657	-489.303	1	-69.538	-486,428
1	-66,526	-487.538	1	-64.373	-487,257
1	-62,971	-489.688	1	-62.463	-491.500
1	-62,718	-494.350	1	-60.184	-490.701
1	-60.302	-487.488	1	-61.157	-486,776
1	-61.825	-485.616	1	-62.236	-485,476
1	-62.008	-485.031	1	-61.401	-484.807
1	-53,996	-487.490	1	-52.968	-489,169

TABLE A.3 EJECTA DATA FROM PHOTOGRAPH NO. 81 (CONTINUED)

SIZE	COORDI	NATES	SIZE	COORDI	NATES	
CLASS	NORTHING	EASTING	CLASS	MORTHING	EASTING	
1	-23,957	-489.782	1	-54.616	-489,384	
1	-55,450	-491.118	1	-53.713	-491.592	
1	-21./13	-491.757	1	-50.284	-492.889	
1	-50,605	-493,699	1	-53.305	-493,452	
	-55,766	-495.676	1	-49.499	-496.029	-
1	-48,566	-496.753	1	-47.897	-496.205	
1	-47.479	-495.881	1	-48.311	-494.438	
1	-46,733	-494.244	1	-49.745	-490.813	
1	-48.616	-489,759	1	-46.659	-485,983	
1	-46,563	-490,379	1	-44.592	-491,079	
1	-42,579	-489,797	1	-43.355	-492,862	
1	-40,805	-495.119	1	-34.353	-490.769	
1	-34,222	-487,449	1	-30.038	-487,125	-
1	-28,421	-496.254	1	-26.848	-493,343	
1	-24,903	-495.831	1	-20.151	-489,662	
1	-18,140	-488.341	1	-15.293	-491.062	
1	-17.806	-493.306	1	-19.081	-496,134	
1	-13.167	-494.579	1	-15.128	-499.915	
1	-11.866	-501.133	1	-15.408	-507.340	
1	-15,150	-507.904	1	-21,387	-509,854	
1	-25,512	-510.345	1	-25.175	-507,528	
1	-35,242	-508.781	1	-36.733	-504,485	
1	-37,902	-503,539	<u>1</u>	-39.197 -46.087	-504.020 -501.959	
	-42,974	-507.411		-50.997	-499.753	
1	-50,282	-502.381	1	-55.229	-498.082	
1	-54,381	-500.044	1			
1	-56,008 -52,557	-503.181 -511.989	1	-56.158 -51.044	-511.983 -510.361	
	-49.435			-49.148	-512.931	
1 1	-43,452	-510.674 -514.143	1	-39.919	-514.354	
77	-35.754	-514.501		-26,573	-515.420	
1	-25,268	-514.524	1	-20.094	-516.617	
	-18,002	-519.622		-17.363	-524.208	
$\frac{1}{1}$	-18,113	-533,182	1	-17.611	-527.116	
-	-17.776	-528.164	1	-19.805	-529.030	
1	-26,251	-522.728	1	-25.416	-530.685	
1	-26,300	-529.511	1	-28.909	-527,175	
1	-31.914	-523.367	1	-33.661	-522.848	
1	-34,625	-521.819	1	-37.454	-520.871	
1				-48.443	-519.411	
	-40.645	-520.418	1	-48.443	*219.411	

TABLE A.3 EJECTA DATA FROM PHOTOGRAPH NO. 81 (CONTINUED)

SIZE	COORDI	NATES	SIZE	COORDI	MATES	
CLASS	NORTHING	EASTING	CLASS	NORTHING	EASTING	
	40 440			46 017	E3E 004	
1	-49,430	-525,211	1	-49.813	-525.901	
1	-52,284	-522.873	1	-53.337	-517,773	
1	-55,868	-522.938	1	-55.873	-526.123	
1	-54.188	-529.246	1	-55.053	-529.116	
1	-56,622	-532.254	1	-57.483	-533.534	
1	-54,767	-532.460	1	-53.641	-533.733	
1	-50,797	-534.457	1	-50.025	-533,428	
1	-49,057	-531.734	1	-48.111	-531.296	
1	-48,710	-530.137	1	-42.877	-530.614	
1	-38,804	-524.913	1	-35.768	-527,655	
1	-34,766	-531.793	1	-33,122	-532,413	
1	-26,064	-538.183	1	-28.943	-538.373	
1	-38,660	-536.572	1	-41.555	-536,200	
1	-41,801	-538,056	1	-42.586	-538.265	+
1	-44.841	-537.732	1	-45.323	-537,434	
1	-49.663	-535.302	1	-51.547	-537,172	
1	-54,257	-536.639	1	-56.170	-538.403	
1	-57.783	-541.641	1	-57.788	-546.011	
1	-55.634	-554.427	1	-45.200	-552,986	
1	-52,600	-548.276	1	-51.808	-546.818	
1	-52.862	-543.198	1	-50.432	-539,692	
1	-48,086	-539,771	1	-34,722	-543,250	
1	-54,294	-544.044	1	-33.371	-544.382	
1	-32,613	-545,106	1	-34.981	-548.674	
1	-34.157	-549.116	1	-29.057	-547.283	
1	-27,912	-543.728	1	-25.109	-546.056	
1	-22.308	-546.428	1	-13.172	-546.458	
1	-21,250	-551,964	1	-19.866	-551,617	
1	-17,836	-552.252	1	-18.356	-554.364	
1	-18,473	-556.730	1	-27.974	-559,518	
1	-27,960	-554.588	1	-35,733	-555.099	
1	-49.068	-562.962	1	-32.623	-565.344	
1	-31,560	-566.313	1	-26.504	-565.657	
1	-23,652	-567.916	1	-21.163	-567.812	
1	-20.062	-581.202	1	-23,530	-580.984	
1	-21,420	-577.152	1	-22.918	-574.613	
1	-25,220	-574.547	1	-25.689	-574.988	
1	-30.499	-575.208	1	-26.130	-578,118	
1	-26,697	-578.298	1	-28.522	-581.393	
1	+29,205	-581,344	1	-28.980	-582.150	
1	-40.319	-581.922	1	-43.299	-582.631	

TABLE A.3 EJECTA DATA FROM PHOTOGRAPH NO. 81 (CONTINUED)

SIZE	COORDI	VATES	SIZE	COORDI	NATES
CLASS	NORTHING	FASTING	CLASS	NORTHING	EASTING
	45 C47				
1	-45,583	-584.396	1	-49.626	-580,924
1	-51,191	-576.800	1	-51.303	-577,431
1	-52.644	-579.356	1	-55.630	-575,662
1	-62,682	-575.930	1	-64.261	-576.771
1	-62,261	-571.075	1	-63.879	-569.182
1	-62,430	-568.250	1	-66.564	-563,710
1	-69,666	-563.155	1	-70.173	-571,572
1	-78.097	-570.306	1	-75.065	-582,430
1	-85,215	-580.232	1	-86.225	-578,529
1	-88,182	-567.087	1	-92.237	-569,816
1	-92,967	-572.368	1	-99.504	-569,840
1	-107.098	-574.123	1	-107.762	-572,852
1	=107,204	-567.913	1	-109.977	-561,158
1	-108,951 -99,473	-551.854	1	-102.784	-551.732
1		-553.956	1	-96.798	-561.620
1	-96.128	-556.087	1	-96.078	-555,454
1	-93,400	-552.906	1 1	-92.912	-553.818
.1	-92,958	-555.417	1	-91.491 -86.582	-554,175
1	*90.378	-555.003	1		-553,671
1	-68, ₀ 74 -64, ₁₀₃	-554,641 -549,586	1	-63.518	-554,740 -543,711
1	-60.439	-542.237	1	-62.455	
1	-65.36ti	-538.221	1	-63.605 -67.121	-536.773
1	-72.374	-536.844	1	-73.738	-537,995 -536,605
<u> </u>	-77.897	-535.924	1	-70.481	-541.877
1	-71,784	-541.645	1	-73.178	-541.394
1	-76,941	-540.874	1	-78.968	-541.915
i	- 79,737	-545.350	1	-82.199	-545,269
i _	-82,766	-537.885	1	-83.437	*536,356
i	-87,229	-535.257	1	-87.874	-538.674
i-	-92,107	-536.771	1	-94.091	-537,425
1	-97.404	-536.356	1	-93.793	-544.086
1	-99.085	-545.069	1	-98.418	-542.162
1	-99,643	-542.546	1	-102,290	-542,262
1	-101.602	-540.267	ī	-104.455	-540.431
1	-106,957	-542.394	1	-106.372	-539,230
1	-108.027	-533.025	1	-111.416	-534.178
1	-111,146	-534.932	i	-114.872	-536.186
i	-120,485	-530.199	1	-121.141	-531.829
1	-121,855	-534,823	1	-123,920	-532,503
1	-125,698	-529.334	1	-128.577	-529.074
	757,000	727,007	_	750.2.1	22,107

TABLE A.3 EJECTA DATA FROM PHOTOGRAPH NO. 81 (CONTINUED)

SIZE	COORDI	NATES	SIZE	COORDI	NATES
CLASS	NORTHING	FASTING		NOMINING	EASTING
1	-122,968	-542,044	1	-124.532	-550,506
1	-120,381	-549.434	1	-121.653	-547,930
1	-121.852	-547,231	1	-121.359	-544.391
1	-119.889	-544.192	1	-117.697	-545.419
1	-115.818	-545.801	1	-114.417	-551.075
1	-111.807	-556,380	1	-111,613	-567,033
1	-114,779	-566,697	1	-112.930	-569.100
1	-122,565	-577.782	1	-130.261	-574.264
1	-132,400	-575.977	1	-144.890	-576.804
1	-143.730	-573.811	1	-128.065	-556,235
1	-130,318	-554.141	1	-129.922	-552.362
1	-135.303	-551,568	1	-139.688	-554.470
1	-146,075	-553.811	1	-149.914	-551.701
1	-157.498	-556.361	1	-160.243	-549.973
1	-1/0,321	-553.841	1	-172.500	-542.285
1	-1/3,157	-537.210	1	-170.128	-526.495
1	-181.370	-540.522	1	-206.352	-532.564
.1	-206,821	-544.451	1	-186.305	-550.040
1	-186,207	-551.856	1	-181.557	-555,336
1	-104.421	-572.114	1	-198.684	-569.277
1	-210.397	-575.826	1	-215.374	-582.721
1	-206.319	-582.347	1	-198.477	-586.884
1	-191.186	-583.157	1	-182.117	-583.009
1	-168.206	-582,839	1	-168.232	-582.825
1	-167,897	-587.069	1	-170.585	-593.208
1	-167,932	-600.963	1	-172,408	-609.114
1	-176,534	-604.159	1	-181.917	-602.667
1	-185,303 -184,487	-604,618 -623.018	1 1	-187.806 -183.192	-604.822 -619.221
	-170.188	-614.068	1	-160.992	-611.212
1	-159,966	-620.899	1	-147.750	-625.938
1	-148.314	-623.128	1	-151.898	-615.732
1	-156,795	-605.720	1	-161.616	-596.520
1	-154.847	-594.378	1	-159.821	-591.838
1	-155.081	-578,686	1	-128.672	-582.086
ī	-129,009	-599,287	1	-131.082	-605.203
i	-123.806	-608.017	î	-124.938	-610.939
1	-131,459	-617,617	1	-135.797	-619.994
1	-128.065	-625.517	1	-117.797	-620.979
1	-116,699	-619.193	1	-121.484	-619,079

TABLE A.3 EJECTA DATA FROM PHOTOGRAPH NO. 81 (CONTINUED)

SIZE	COORDI		SIZE	COORDÍ		
CLASS	NORTHING	EASTING	CLASS	NOPTHING	EASTING	
1	-120,839 -119,654	-618.187 -612.152	1	-120.504 -120.126	-615,286 -607,149	
1	-114,939	-602.519	1	-116.068	-596.637	
1	-106,792	-588,470	1	-102.551	-588.069	
ī	-81,593	-587.225	1	-81.945	-586.598	
i-	-77,071	-585,630	$\bar{1}$	-67.924		
1	-69.589	-587.241	1	-72.308	-595.778	
1	-79,352	-596.725	1	-79.713	-601.319	
1	-73.066	-602.864	1.	-78.004	-607,679	
1	-89.295	-616.103	1	-92.000	-615.397	
1	-94,209	-613,325	1	-95.423	-612,368	
1	-94,867	-611.227	1	-95.959	-610,630	
1	-103,763	-618.790	1	-114.664	-624.302	
1	-75,146	-628.471	1	-76.185	-624.278	n 1 miletral world
1	-72.348	-623.000	1	-72.347	-618,749	
1	-66,950	-622.710	1	-66.167	-622,518	
1	-65,292	-621.973	1	-64.960	-622.281	
1	-64,571	-623.063	1	-54.146	-610.718	
1	-59,412	-607.429	1	-60.340	-599,990	
1	-48,935	-602.853	1	-51.642	-599.502	
1	-47,896	-599.714	1	-46.509	-596.593	
1	-54.604	-594.509	1	-51.048	-591.314	
1	-51,999	-590,558	1	-53.729	-587,253	
1	-55,531	-584.298	1	-52.856	-585.750	
1	-50.821	-586.961	1	-50.467	-584,894	
1	-29,584	-586.157	1	-27,274	-589,570	
1	-27.430	-590.854	1	-22.424	-588.925	
1	-19,108	-596,355	1	-27.048	-596,499	
1	-33,814	-594.948	1	-20.130 -25.730	-603.174 -606.488	
1 1	-19,105 -26,988	-605.660 -608.027	1	-27.741	-605,613	
<u> </u>	-32,207		1	-36,556	-606,409	
1	-38.517	-612.454	1	-33.544	-613.803	
1	-29,796		1	-26.704	-612,826	
1	-21.520	-614.883	1	-19.314	-619,588	
1	-19,726	-620.631	1	-20.246	-626,112	
î	-51.914	-618.772	1	-35.873	-620,714	
1	-37,164	-625.147	1	-39.385	-626.221	
ī	-42.150	-629.346	1	-45.675	-630.068	
i	- 50.516	-627.136	1	-55.035	-626,032	
1	-55,822	-630.452	1	-54.398	-629.541	

TABLE A.3 EJECTA DATA FROM PHOTOGRAPH NO. 81, (CONTINUED)

SIZE	COORDI	NATES	SIZE	COORDI	NATES
CLASS	NORTHING	FASTING	CLASS	NOTTHING	EASTING
	-37.661	-633.694	1	-25.364	-660.962
1	-24.575	-664.703	1	-41.070	-659.407
1	-42.228	-662.636	1	-47.679	-674.992
1	-53,020	-678.293	1	-60.461	-662,277
1	-62.304	-654.229	1	-60.694	-651.710
1	-53.403	-643.379	1	-45.899	-642,994
1	-50.086	-639.407	1	-62.799	-635.355
1	-71.842	-643.460	1	-81.884	-652,433
1	-06.407	-661,204	1	-78.018	-667.551
1	-83,117	-673.635	1	-102.481	-676.213
1	-102,956	-675.283	1	-104.095	-666,323
1	-111,629	-664.040	1	-117.409	-668.193
1	-114,570	-654.267	1	-115.834	-649.135
1	-98.181	-632.078	1	-101.215	-632.927
1	-110.627	-634.678	1	-117,187	-642.210
1	-126.134	-635.913	1	-135.350	-631,288
1	-144.915	-628.673	1	-154.566	-644.430
1	-139.668	-646.936	1	-140.915	-651,516
1	-135.692	-654.381	1	-131.342	-645.201
1	-141,424	-662.073	1	-146.197	-673.942
1	-153,958	-665.150	1	-167.184	-657.093
1	-1/7.737	-666.533	1	-197.730	-669.067
1	-209,650	-670.398	1	-212.376	-654,918
1	-211,410	-637.588	1	-203.924	-630.761
1	-177.341	-632,331	1	-169.120	-629.672
1	-166.821	-632.697	1	-168.143	-636.421
1	-170.120	-649.378	1	-180.102	-647.192
1	-186.735	-644.190	5	-18.884	-485.083
2	-35,495	-484.508	2	-43.880	-483.940
2	-54.709	-481.683	2	-45.774	-479.950
2	-42,480	-479.042	2	-43.181	-465,289
2	-55.398	-481.075	2	-59.317	-484.473
2	-64.422	-478.603	5	-58.631	-477.611
	-60.720	-474,449		-62.992	-474.039
2	-69.046	-475.781	2	-63.961	-467,880
2	-56.223	-455,961	2	-67.071	-455.380
5	-68,215	-454.468	5	-76,969	-460.625
2	-77.884	-450.315	2 2 2	-81.825	-445.298
2	-97.951	-443.900		-94.168	-453.517
2	-94.575	-458.417		-82.972	-456.343
2	-82,449	-455.222	2	-72.981	-483.100

TABLE A.3 EJECTA DATA FROM PHOTOGRAPH NO. 81 (CONTINUED)

SIZE	COORDI	NATES	SIZE	COORDI	NATES
CLASS	NORTHING	FASTING	CLASS	NONTHING	EASTING
2	-83.744	-480.883	2	-89.589	-467.473
2	-107,943	-460.107	2	-106.827	-464.775
2	-109.014	-466.057	2	-126.497	-467,516
2	-128,036	-457.136	2	-107.7/8	-452,355
2	-114.992	-445.984	2	-142.722	-465,228
2	-1/0.135	-473.611	2	-160.065	-495.732
2	-160.776	-496.464	2	-168.985	-500.577
2	-1/4.257	-515.429	2	-101.562	-524.638
2	-123,114	-495.784	2	-118.816	-528.083
2	-109,462	-508.121	2	-90.715	-528.277
2	-80,500	-527.567	2	-61.886	-527.301
2	-16,763	-524.117	2	-77.614	-515,620
2	-90,424	-509.517	2	-97.468	-501.115
2	-81.668	-503.343	2	-78.522	-512,781
2	-/4.797	-510.001	2	-71.815	-512,538
2	-63.541	-513.549	2	-61.129	-511.944
2	-62,356	-505.167	2	-67.642	-503.341
2	-65.963	-503.951	2	-69.677	-498.698
2	-13.726	-497.582	2	-75.414	-496.715
2	-84.543	-494.132	2	-93.013	-496,560
2	-93.459	-483.208	2	-92.421	-485.372
2	-66,839	-487,190	2	-87.673	-482,988
2	-69.589	-487.319	2	-63.514	-489,307
2	-61,456	-488.972	2	-58.878	-487.637
2	-57,973	-485.007	2	-40.476	-492,888
2	-37.734	-495.220	2	-13.456	-497.645
2	-10.747	-500.255	2	-37.962	-501.266
2	-39.754	-504.241	2	-48.653	-503.547
2	-55.032	-507.738	2	-49.961	-507.156
2	-34.413	-515.236	2	-17.186	-518.134
2	-22.534	-524.856	2	-53.663	-528.754
2	-29.870	-535.500	2	-25.072	-538,738
2	-46.792	-541.224	2	-17.941	-566,428
2	-14,948	-580.946	5	-20.162	-580,037
2	-19.049	-579.312	2	-27.233	-576.838
2	-27.257	-583.240	2	-51.944	-576.178
2	-52.357	-578.532	2	-99.434	-555.735
2	-68,052	-550,060	2	-61.955	-541.971
2	-79,541	-535.386	2	-77.640	-539,939
2	-93,339	-535.242	5	-95.465	-545,494
2	-95.446	-543.857	2	-150.082	-538,712

TABLE A.3 EJECTA DATA FROM PHOTOGRAPH NO. 81 (CONCLIDED)

SIZE	COORDI	NATES	SIZE	COORDI	NATES	
CLASS		FASTING	CLASS		EASTING	
2	-135,669	-538.255	2	-131.607	-541.585	
2	-121.852	-549.765	2	-152.471	-563.407	
2	-189.010	-541.653	2	-181.343	-579,615	
2	-178,817	-576.649	2	-174.504	-591.187	
2	-126,048	-607.443	2	-127.633	-614,705	
2	-137,584	-624.361	2	-119.615	-608,089	
2	-90,959	-589.256	2	-87,492	-586,326	
2	-80.236	-588.665	2	-65.708	-598.300	
2	-84.151	-612,285	2	-85,787	-609.841	
2	-89,439	-621.878	2	-19.889	-591.813	
2	-37,395	-621.243	2	-24.884	-638,626	
2	-49.532	-658.588	2	-57.540	-666,736	
2	-59,442	-656.824	2	-67,435	-651,878	
2	-60,119	-644.002	2	-46.053	-636.117	
2	-64,632	-637.108	2	-66,526	-633,500	
2	-/0.354	-653.800	2	-109.765	-675,243	
2	-116,962	-665.505	2	-92,759	-646,120	
2	-158,116	-632.869	2	-120.116	-671.146	
2	-128,313	-674.632	2	-212.724	-671.382	
2	-168.694	-648.670	2	-182.836	-656,114	
2	-188,816	-645.154	3	-60.019	-473.072	
3	-64,639	-455,505	3	-75.236	-449.922	
3	-08,715	-466.654	3	-117,246	-466,420	
3	-111,941	-451.571	3	-180.186	-456,415	
3	-142,593	-480,118	3	-107.263	-490,393	
3	-109.084	-489.836	3	-63.333	-502.125	
-3	-88,659	-487.422	3	-45.687	-485,689	
3	-8.313	-501,495	3	-45.242	-508.643	
3	-11,118	-529.970	3	-35.101	-538,575	
3	-41.316	-542.712	3	-33.049	-548.610	
3	-30.201	-555.238	3	-37,909	-564,262	
3	-16.572	-578.710	3	-81.273	-555.180	
3	-65,891	-535.459	3	-77.688	-544,980	
3	-78.789	-545.927	3	-134.629	-600.896	
3	-68,055	-589.596	3	-82.679	-592.840	
3	-115.349	-626,847	3	-68.502	-615,309	
3	-25.312	-614,469	3	-31.043	-617,995	
3	-30.557	-636,006	3	-26.718	-668.755	
4	-50,029	-479.985	4	-104.799	-503.135	
4	-/1.341	-522,361	4	-75.722	-485.106	
4	-21.592	-530.495	4	-30.058	-525,368	
5	-66,724	-461.330	5	-96.869	-506.271	

TABLE A,4 EJECTA DATA FROM PHOTOGRAPH NO. 97

TOTAL NUMBER OF PARTICLES COUNTED - 190.

SIZE	COORDI	NATES	SIZE	COORDI	NATES
CLASS	NORTHING	EASTING	CLASS	NORTHING	EASTING
*					
1	-210,786	-905.211	1	-199,543	-898,261
1	-189,287	-898.750	1	-193.868	-883,431
1	-198,267	-876,484	1	-211.386	-883.241
1	=217,990	-880.037	1	-219.803	-879,782
1	-217,446	-848,947	1	-203,427	-848,445
1	-193,497	-856.511	1	-196,808	-869,727
1	-186,779	-875.625	1	-174.476	-875,674
1	-173. 077	-876.025	1	-167.540	-873,869
1	-168,287	-853,766	1	-164,946	-851.820
1	-161,215	-858.657	1	-158.372	-858,186
. 1	-159,309	-867,550	1	-160.222	-868,432
1	-140,834	-868.454	1	-139.309	-874.341
1	-140,706	-882,419	1	-142.052	-894,827
1	-146,309	-894.860	1	-148.477	-889,505
1	-153,483	-878.139	1	-162,371	-884,108
1	-167,159	-885.065	1	-165,336	-891.113
1	-164,526	-891.296	1	-160.272	-888,860
1	-156,810	-888.862	1	-167,257	-911.311
1	-162,648	-908,661	1	-160.448	-905,961
1	-152,938	-908.226	1	-148,678	-904,536
1	-131,597	-912,552	1	-123.924	-861,936
1	-109,497	-856.268	1	-102.072	-864,859
1	-102,046	-876.915	1	-104.321	-901,486
1	-72,058	-911.026	1	-79.360	-902.847
1	-65,114	-885,974	1	-69,803	-873,424
1	-36,631	-871.996	1	-25.479	-882,118
1	-7,519	-834,999	1	-16,693	-824,609
1	-49,512	-835.544	1	-55.185	-831.261
1	-50,990	-845.727	1	-44.581	-852,164
1	-42.167	-858,188	1	-73.844	-850,960
1	-92,825	-849.859	11	-122.749	-843,951
1	-117,448	-835.675	1	-100.865	-829,187
1	-83,433	-821,101	1	-98,524	-814.031
1	-110,498	-806.189	1	-118.747	-815,724
1	-118,287	-822.949	1	-142,788	-816.819

TABLE A.4 EJECTA DATA FROM PHOTOGRAPH NO. 97 (CONTINUED)

SIZE	COORDI	NATES	SIZE	COORFI	NATES
CLASS	NORTHING	EASTING	CLASS	NORTHING	EASTING
1	-161.425	-802.698	1	-174,950	-815,711
1	-154,024	-824,461	1	-157.194	-827,080
1	-146,839	-838.740	1	-152.969	-848.020
1	~168,753	-841.845	1	-176.236	-845.052
1	-176,807	-841.053	1	-177.497	-838,178
1	-217,602	-802.852	1	-195.744	-754.782
1	-178,469	-783,301	1	-175,394	-795,542
1	-1/2,128	-800.091	1	-159.261	-792,021
1	-151,834	-791.031	11	-150,121	-781,584
1	-172.744	-775,447	1	-170.452	-776,342
1	-165,298	-767,870	1	-154.239	-765,051
1	-143.644	- 752,738	1	-137.849	-756,951
1	-136,837	-761.166	1	-139.366	-762,754
1	-127.261	-765,083	1	-142.019	-769,424
. 1	-135,877	-772.610	1	-140.133	-778,677
1	-141.051	-779.086	1	-126.193	-786,947
1	-136,591	-788.122	1	-141.583	-793,624
1	-129,119	-797,97 2	1	-122.510	-794,426
1	-109,364	-795.509	1	-89,130	-779,742
1	-76,158	-778.59 0	1	-63,883	-772.030
1	-50,682	-762.100	1	-50.599	-764,922
1	-57,426	-776.675	1	-51.669	-804,488
1	-40,787	-806.574	1	-22.224	-794,869
1	-3,445	-791.599	1	-19.397	-764,939
1	-19.379	-752,485	1	990	-721,229
1	-36,943	-711.215	1	-52,240	-718,299
11	-58,937	-725,602	1	-58,764	-727,854
1	-43,576	-742.838	1	-50.475	-742,043
1	-52,976	-743.243	1	- 50,203	-751,794 -730,744
1	-86,876	-736,838	1	- 87.704	- 739,311
1	-89,537	-739.804	1	-88.859	-746.448 -748.599
1	-106,422 -113,389	-745.922 -752.108	1	-108.454 -119.663	-753,421
	-113,865	-741.323	1 1	-95,607	-731,294
1	-99.522	-722.004	_	-93.525	-723,290
1	-86,541	-711.800	1 1	-85.601	-709,625
1	-109.528	-707.849		-119.543	-723.936
1	-131.588	-740.677	1	-131.721	-746,596
1	-146,410	-747.408	1	-147.174	-747.518
i	-156,480	-743.301		-168,343	-745,036
1	-160,712	-723,653	1	-150.243	-723,151
-	7-01-75		-	7-015.0	

TABLE A.4. EJECTA DATA FROM PHOTOGRAPH NO. .97 (CONCLUDED)

SIZE	COORDI	NATES	SIZE	COORLI	NATES	
CLASS	NORTHING	EASTING		NORTHING		
1	-141.142	-711.349	1	-149.938	-705.879	
1	-183,730	-726.587	1	-134.500	-689,560	
1	-131,702	-689.707	1	-131.797	-701,584	-
1	-131.813	-703.753	1	-127,828	-703,177	
1	-87.090	-701.156	1	-81.662	-689,876	
1	-82,245	-686.334	1	-59.069	-687,374	
1	-60,527	-690,978	1	-58.290	-696,615	
1	-51,995	-701.744	1	-49.083	-709.056	
1	-43.765	-709.656	1	-34.916	-699,798	
1	-31.182	-695.471	2	-225.772	-874,766	
2	-144,003	-895.299	2	-161.251	-883.364	
2	-59,647	-832.990	5	-167.289	-845,783	
2	-180.731	-786.042	2	-158.758	-773,967	
2	-157,327	-769.782	2	-99.698	-782.330	
2	-65,836	-724.350	2	-49.903	-728,109	
2	-90.438	-712.533	2	-162.431	-730.004	
2	-128,986	-710.573	2	-136.071	-686.318	
2	-21,511	-701.831	3	-172.229	-893,469	
3	-74,299	-888.470	3	-34.677	-872,944	

TABLE A.5 EJECTA DATA FROM PHOTOGRAPH NO. 116.

TOTAL NUMBER OF PARTICLES COUNTED - 455.

SIZE	COORDII	NATES	SIZE	COORDI	NATES
CLASS	NORTHING	EASTING	CLASS	NORTHING	EASTING
					P
1	194,544	-451,527	1	203.822	-440.063
. 1	210.382	-440.436	1	226,254	-448,494
1	237.654	-457.513	1	223.722	-467,498
1	232,276	-476.936	1	243.401	-482,376
1	246,569	-464.445	1	269.642	-490.105
1	280.736	-484.250	1	307.220	-498,427
1	308,217	-519.996	1	332.041	-560,513
1	349.651	-567.011	1	345.070	-549,657
1	349,355	-553.175	1	356.471	-551,894
1	437,722	-543.992	1	416.879	-549.288
1	409,669	-554.555	1	390.775	-547,095
1	403,260	-537.711	1	412.666	-535,888
1	413,263	-535.512	1	414.773	-530,524
1	419.177	-534.863	1	408.086	-520.397
1	398,246	-517.301	1	394.010	-503.179
1	382,424	-505.878	1	401.266	-475,232
1	401,480	-477.158	1	407.830	-481.879
1	370.558	-504.176	1	363.542	-497,457
1	379,425	-520.480	1	368.820	-527.792
1	344.098	-496.852	1	350.597	-499,497
1	357,357	-481.825	1	333.567	-490.336
1	333.124	-458.052	1	304.223	-462.747
1	264,846	-444.905	1	275.791	-438,984
1	2/5,251	-434.369	1	258.215	-442.016
1	252,155	-423.415	1	252.125	-422.792
1	259,819	-412.279	1	265.404	-409,360
1	256.307	-408.296	1	256.879	-407,285
1	253,924	-405.072	1	252.628	-405,341
1	252.914	-404.337	1	254.481	-403.632
1	261.457	-400.100	1	251.247	-400.658
1	247,912	-399.288	1	247.645	-398,306
1	241.139	-397,190	1	236,118	-392,601
1	252.716	-394.469	1	272.391	-398,784
1	273,618	-388.060	1	275,418	-384,813

TABLE A.5 EJECTA DATA FROM PHOTOGRAPH NO. 1164 (CONTINUED)

SIZE COORDINATES CLASS NORTHING EASTING	SIZE COORDINATES
ODMOG WOMINING PRADITION	CLASS NORTHING EASTING
1 270,735 -382.944	1 265.052 -377.971
1 260.729 -379.057	1 255.803 -380.016
1 268,207 -372,183	1 267.070 +353.287
1 267.763 -353.416	1 278.862 ~363.758
1 282.775 -359.245	1 278.433 -354,648
1 262,433 -351.994	1 291.665 →356.461
1 293,042 -358,307	1 299,936 -373,941
1 311.108 -373.011	1 293.124 +395.375
1 288,840 -410.239	1 311.454 -390.522
1 312,322 -422,815	1 372.883 -484,859
1 3/3,541 -484,755	1 376.773 -479.347
1 382.180 -479.837	1 384.475 -482,589 1 388.344 -485.067
1 366,895 -480,469 1 392,007 -487,942	
1 391,280 -496.919	1 387.475 #494.623 1 394.417 #491,138
1 398,364 -495.009	1 397.970 -497.617
1 396,855 -499,113	1 394.195 -501.190
1 400,074 -504,429	1 404.201 -497.890
1 392.331 -480.654	1 394,192 -479,498
1 392,317 -471.452	1 399.115 -472.364
1 403,619 -473,409	1 414,410 -476,316
1 414,028 -482.764	1 415.177 -487,099
1 420,777 -487,724	1 421.371 -488.015
1 416,703 -492.500	1 416.780 -494.594
1 417,750 -495,879	1 409.909 -495,345
1 409.075 -494.627	1 402,416 -503,968
1 403.040 -504.030	1 407.421 -510.313
1 421,927 -505.159	1 423.935 =506.579
1 423,322 -507,654	1 421,366 -511,310
1 420,999 -512.066 1 425,470 -520,510	1 425.654 +515.952 1 423.492 -522,074
1 432,923 -530.615	1 441.050 -530.048
1 441,216 -486.693	1 441.084 -480.484
1 445.093 -488.614	1 449.571 -491.630
1 451,709 -492.591	1 453,621 -488,177
1 457,520 -491.567	1 457.945 -492.301
1 460,687 -495,405	1 462,687 -495,492
1 459.311 -499.029	1 457.197 -498,587
1 454,076 -497,312	1 451,889 -497,194
1 447,560 -502.124	1 449.637 -505,845
1 451,798 -505,469	1 452,116 -501,936

TABLE A.5 EJECTA DATA FROM PHOTOGRAPH NO. 116 (CONTINUED)

SIZE	COORDI	NATES	SIZE	COORDI	NATES	
CLASS	NORTHING	FASTING	CLASS	NOBTHING	EASTING	
	450 047	500 445		450 700	507 470	
1	452,847	-502.445	1	452.792	-503.178	
1	454,509	-503,215	. 1	457,643	-504,893	
1	460.137	-506.056	1	454.931	-507,923	
1	457,017	-512,250	. 1	441.142	-535,975	-
1	445,701	-530.319	1	446.943	-531,662	
1 .	447,835	-531.336	1	447,110	-533,147	
1	461.115	-512.164	1	461.988	-509.097	
1	469,236	-514,736	1	486,539	-483,253	
1	487,434	-478.064	1	490.946	-472.490	
1	494.319	-471.912	1	496.980	-466,485	
1	500,216	-465.549	1	496.708	-463,308	
1	496,087	-457,943	_ 1	493.152	-457,901	
1	490,996	-456,931	1	490.508	-464,855	
1	487,773	-468.842	1	487.984	-470.462	
1	488,298	-471.205	1	486.329	-476,935	
1	485,288	-470.548	1	481.854	-467,516	
1	480.037	-464.885	1	480.578	-463.396	
1	485,779	-457.903	1	482.958	-456,404	
1	477.573	-452.646	1	473.499	-441.542	
1	462,206	-430.039	1	457.817	-442,497	
1	466,119	-449.976	1	471.413	-453.148	
1	472.823	-459,238	1	468.179	-457,378	
1	464,993	-462,531	1	477,369	-473,021	
1	478,597	-478.781	1	474.108	-475,656	
1	469,352	-476,453	1	463.782	-474,126	
1	461,997	-474.904	1	466.973	-483,195	
1	466,374	-492,749	1	464,312	-491,800	
1	460,399	-489.520	1	460.493	-483,485	
1	455,264	-477,792	1	453.943	-476,990	
1	449,187	-477.203	1	442.328	-476,647	
1	439.370	-469,201	1	445,971	-470.334	
1	449,183	-472.598	1	444.831	-457,146	
1	447,331	-455.084	1	450.634	-457,962	
1	459,181	-456,934	1	460.885	-457.131	
1	457,625	-450.441	ī	454.016	-452,193	
1	453,588	-451,591	1	452.865	-451,740	
1	450,971	-450,234	1	449,064	-449,291	
î	439,202	-456.756	ī	437.648	-457,494	
ī	431,263	-453.192	1	440.544	-441,120	
1	437,913	-438.732	1	450.171	-436,123	
1	447,342	-424.521	1	452.591	-422,140	
*		15.1757		10010	1	

TABLE A.5 EJECTA DATA FROM PHOTOGRAPH NO. 116 (CONTINUED)

SIZE	COORDI	VATES	SIZE	COOEDI	VATES
CLASS 3	JORTHING	EASTING	CLASS	NORTHING	FASTING
1	435,303	-408,072	1	433.458	-412,694
1	431,733	-412.272	1	423,464	-407.891
1	429,927	-420.990	1	436.139	-422,471
1	434,262	-429.458	1	425.399	-426,791
1	417,663	-427.525	1	413.559	-427,648
1	412,518	-436,777	1	416.191	-440.538
1	412,795	-440.396	1	376.858	-408.369
1	385,882	-409.033	1	386.440	-389.079
1	355,070	-347.573	1	345.437	-356,589
1	334,434	-384.278	1	333.654	-383,805
1	329.176	-368,807	1	330.017	-361,221
1	326,022	-360.168	1 1	323.254	-360,209
1	319,764	-358.915 -356.343		319.751	-355,633 -361.099
1	305,200	-358.824	1	312.989	-345,178
1	326,114	-341.176	1	317.308	-341,013
1	317,513	-339.531	1	313.744	-340,602
1	289,204	-339.893	î	283.516	-337,596
1	301,338	-322.176	1	309.324	-317,152
î	312,631	-319.451	î	313.591	-318,006
1	320.505	-314.624	1	330.216	-313.035
1	337,511	-294.812	1	345.599	-276,188
1	355,218	-300.476	1	342.724	-329,452
1	346,256	-329.980	1	355.036	-340.575
1	354,032	-342,100	1	355.404	-343.425
1	356,337	-342.975	1	359.665	-345,049
1	392,230	-314,586	1	404.398	-321,079
1	398,708 395,883	-335.135 -370.414	1	382.926	-364.511
1	414,858	-340.044	1	414.979	-340,667 -335,830
1	413,743	-372.052	1	431.712	-359,737
1	422,840	-381.723	1	428.487	-388.983
1	431,281	-395.446	1	429.538	-397.882
ī	431.800	-399.166	1	436.759	-408.383
	445.283	-414.881	1	454.449	-421,198
1	455,697	-413.230	1	450.146	-401,412
1	452.391	-400.443	1	454,229	-401,116
1	452,726	-390.923	1	461.463	-396,724
	462,024	-399,765	11	463.711	-399,192
1	476,248	-392.622	1	487.998	-391,064
1	469,270	-400.870	1	473.351	-401.618

TABLE A.5 EJECTA DATA FROM PHOTOGRAPH NO. 116 (CONTINUED)

SIZE CO	ORDINATES	SIZE	COORDI	SATES
CLASS WORTH	ING FASTIS	in CLASS	NORTHING	FASTING
	141 -401.9		475,886	-403.721
1 4/6,			464,565	-413,024
1 467	_		468.723	-417,119
	,979 -420.0		463.433	-425,439
	091 -424.4		469.944	-423.026
94	343 -421.3		476.001	-419,445
	011 -410.		484.972	-408,407
	811 -406		487,696	~411.051
	344 - 417.1		491.093	-418.641
	478 -415.6		482,934	-413,798
	791 -424.		482.172	-426.897
	449 -429.		476,149	-429,055
	.267 -431.6		471.763	-434.098
	086 -433.8		478,927	-440,153
	836 -437.	374 1	484,367	-443.255
	,283 -450.		490.671	-428.845
	,906 -433.		524.233	-428.018
	528 -439.9		503.324	-455,585
_	.553 -456.		507.838	-451.228
	.7/7 -446.	The same of the last contract	543.819	-432,484
	.052 -429.		544.807	-408.032
	325 -406.		561,563	-405,990
	,939 -389.		562.638	-383,471
	586 -392.		553,333	+394,271
	745 -395.		535.091	-408,597
	.003 -395.		525,885	-391,787
	170 -388.	477 1	498.907	-389,736
	764 -383.		518,187	-369,881
	.450 -367.		519.258	-372.298
	736 -383.		527.466	-382,871
	085 -374.5		525.686	-358,069
	750 -360.		495.129	-362,012
	869 -352.		500.784	-336.527
. () .	,664 -337.9		487.307	-333,198
	964 -332.		479.225	-327,747
	,970 -337.		469.347	-354,909
	899 -342.		431.982	-318.948
	864 -285,		429.790	-282.676
	514 -304.		381.240	-292,813
	.549 -267.		391.005	-265,370
	111 -255.0		366.837	-268,242
2 22/	.972 -484.	109 2	246.353	-473,100

TABLE A.5 EJECTA DATA FROM PHOTOGRAPH NO. 116; (CONCLUDED)

SIZE	COORDI	VATES	SIZE	COORDI	STATES	
CLASS	NORTHING	EASTING	CLASS	NORTHING	FASTING	
			05:400	.008131303	na311.93	
2	424,639	-528.460	2	374.699	-505,466	
2	375,951	-529.522	2	367.614	-531,345	
2	263.153	-474.144	2	243.547	-398,406	
2	371.894	-483.422	2	383.493	-477,363	
2	383,849	-480.096	2	391.506	-489,502	
2	395,716	-492.293	2	390,990	-483,002	
2	393.351	-475.560	2	394.685	-473,798	
2	405,863	-478.510	2	415.617	-494,608	
2	414,149	-498.955	2	420.110	-512.294	
2	446,518	-481.150	2	458.252	-493.334	
6	404,456	-503,282	2	458.899	-508.574	
2	455.104	-507.151	2	485.477	-484,515	
2	488,051	-465.592	2	472.745	-443.010	
2	474,965	-477.220	2	459.478	-485.582	
2	451,716	-477.053	2	446.127	-465,989	
2	392,166	-436.340	2	334.853	-382.013	
. 2	332,954	-380.089	2	320.629	-355,975	
2	361,163	-289.617	2	361.153	-309,535	
2	492,790	-413.393	2	505.020	-451.184	
2	543,294	-416.287	2	562.962	-404.908	
2	566.724	-396.882	2	528.575	-390.816	
2	516,977	-386.650	2	510.187	-375,292	
2	522,684	-375.167	2	507.367	-366.604	
2	404.835	-331.608	2	445.076	-289,953	
2	3/2.372	-279.428	2	378.036	-274.623	
4	391.990	-265.492	2	374.318	-258.393	
3	229.274	-454,741	3	269.009	-380.843	
3	410,789	-431.105	3	357.837	-350,661	
3	509.210	-363-451				

TABLE A.6 EJECTA DATA FROM PHOTOGRAPH NO. 117,

TOTAL NUMBER OF PARTICLES COUNTED - 693.

SIZE	COORDII	MATES	SIZE	COORDI	MATES	
-			CLASS		EASTING	_
CLASS	NORTHING	EASTING	CLASS	NORTHING	EASTING	
1	680,182	-765.005	1	676.507	-749,321	
1	663,334	-746.094	1	658.343	+734,774	-
1	661,030	-730.980	1	661.054	-727,714	
1	651.885	-728.820	1	651.909	-717,050	_
1	655,850	-713.846	1	656,708	-709,982	
1	642,545	-702.377	1	629.899	-700,472	
1	608,799	-712,180	1	608.536	-687,513	
ī	626,718	-681.698	1	625.979	-664,267	-
1	590,248	-683,406	1	587,421	-665,287	
1	5/8.481	-667.406	1	577,965	-666,390	
1	566,613	-669.767	1	569.088	-665,576	
1	569,647	-664.468	1	584.625	-651.479	
1	593.970	-643,532	1	584.837	-645,461	
1	5/3,618	-647.063	1	552.052	-654.749	
1	554.796	-650.106	1	549.811	-650.479	
1	549,122	-650.155	1	551.099	-647,635	
1	539,020	-656.867	1	534,889	-644.049	
1	533,386	-644.397	1	537.349	-627,404	
1	546,645	-619.684	1	486.689	-614,047	
1	492,500	-661.722	1	508.578	-667,622	
1	511,239	-640.646	1	536.012	-663,123	_
1	537,043	-673.027	1	527.621	-676.906	
1	536,364	-682,748	1	541.301	-688,444	
1	542.612	-688.734	1	540.677	-694.774	
1	524,669	-691.002	1	515.593	-697,621	
1	526,549	-705.199	1	532.046	-712.695	
1	537,873	-707.418	1	544.902	-707,251	
1	542.151	-719.577	1	563.174	-703.281	
1	570,165	-702.001	1	581.473	+717,623	
1	582,173	-721.608	1	574.286	-726,352	
1	5/4.758	-729.077	1	578.106	-746.792	
1	602,165	-724.435	1	597.428	-734.550	
1	596.166	-750.653	1	594.245	-759.836	
1	600,958	-759.059	1	606.580	-753.101	
1	614.620	-763.108	1	610.881	-766,437	

TAPLE A.6 EJECTA DATA FROM PHOTOGRAPH NO. 117 (CONTINUED)

SIZE COORD	INATES	SIZE	COOME	INATES	
CLASS NORTHING	EASTING	CLASS		EASTING	
1 619,564	-774.745	1	629.369	-769,240	-
1 636,907	-765.999	1	638.781	-760,237	
1 648,308	-762.896	1	650.584	-761,667	
1 651.123	-762.076	1	673.997	-763.690	
1 674,313	-763.236	1	678,983	-777,490	
1 661,569	-774.323	1	664.553	-780.696	
1 644,906	-776.273	1	643.951	-786,534	
1 632,158	-791.469	1	661.196	-803.191	
1 659,192	-807,213	1	658.931	-809,489	-
1 661,926	-812,220	1	656.961	-813,281	
1 649,197	-812.099	1	640.556	-805,717	
1 637,432	-809.168	1	648.146	-817,525	
1 644,740	-818.499	1	644.730	-819.331	
1 633,176	-822.618	1	626.391	-825.078	
1 620,442	-829,482	1	630.345	-842.272	_
1 632,812	-845.389	1	630.666	-848.227	
1 621,427	-843.042	1	606.091	-834,957	_
1 606,658	-830.051	1	606.019	-829.315	
1 598,998	-827.286	1	616.417	-820,795	
1 617,063	-821.369	1	618.767	-819,694	
1 618,576	-818.268	1	624.328	-818.198	
1 628,440	-812.716	1	626.845	-810.532	
1 623,171	-812.417	1	613.561	-808.595	
1 613,149	-809.181	1	613.479	-810,987	
1 610.610	-812.091	1	610.404	-814.707	
1 610,469	-809.865	1	606.509	-810.332	
1 601,168	-807.027	1	609.776	-804,016	
1 615,185	-799.682	1	614.794	-797,854	
1 617.332	-790.304	1	607.730	-790.384	
1 608,643	-795,092	1	605.510	-797.111	
1 602,823 1 593,986	-796.87 ₀	1	599.351	-790.072	
1 593,986 1 587,550	-795.307	1	591.018	-779.875	
1 586,409	-779.943	1	586.580	-775.861	
1 587,742	-763.512 -800.919		578.670	-780.372	
1 585,818	-805.472	1	586.593	-802.085	
1 596.012	-827.081	1	598.208	-819,849	APPROXICE OF
1 584,548	-816.843	1	590.280	-821.504	
1 578,793	-807.184	1	582.268	-816,847	
1 578,148	-798.492	1	577,667	-801.047	
- 201110	1,0,476	1	576,262	-795,397	

TAPLE A.6 EJECTA DATA FROM PHOTOGRAPH NO. 117 (CONTINUED)

SIZE COORDINA	res si	ZE	COORDIN	ATES
CLASS NORTHING E	ASTING CL	ASS N	DETHING	EASTILIS
1 575,426 -	795.532	4	574.351	-799,146
The state of the s	798.575		572.424	-803,203
	805.272		565.075	-803,162
	795.194		566,569	-794,672
	791.861		569,139	-786,081
	784.085		564.283	-782.355
	777.338		571.760	-779,529
_	762.159		575.193	-761.093
	759.518		570.418	-751.567
1 553,363 -	735.052	1	546.097	-734.775
1 546.651 -	750.241		541.179	-746.677
	753.410		548.298	-765.751
	766.894	1	550.018	-774.817
1 551.242 -	784.704		544,833	-781.023
	776.302		542.073	-776,943
	780.125		535.176	-779,858
	777.830		538.300	-776,800
	769.021		532.682	-766.125
	763,275		527.654	-757.087
	770.242		525.454	-767,290
	768.466		520,568	-766.716
	759,303		517.394	-761.103
	758.845		513.591	-760.357
	761,810		512.377	-762.073
	753.787		508.812	-748,745
	748,873 742,521		491.685 480.967	-748.636 -739.875
	734,396		488.480	-732.411
	731.188		493.886	-728.847
	729,514		507.854	-729,713
	726.178		511.826	-723,936
	722,919		511.773	-731,014
	735.814		507.806	-741.323
	745,085		521.912	-749,343
	734,580		520.237	-733,597
	727.653		523.242	-726,201
	726,941		525.792	-712.932
	709,508		507,998	-711,061
	710.430		500.411	-708.880
	710,014		488,160	-710,030

TAPLE A.6 EJECTA DATA FROM PHOTOGRAPH NO. 117 (CONTINUED)

SIZE COORDINATES	SIZE	COORDI	NATES	
CLASS NORTHING EASTING	CLASS	NORTHING	EASTING	
1 484,702 -703.879	1	489.032	-696,970	
1 480,751 -692,116	1	477.769	-692.571	
1 468,032 -690.884	1	473.226	-695.482	
1 472,459 -714,667	1	478,114	-713,540	
1 486,056 -719.367	1	485.902	-727,484	
1 472,528 -727.737	1	471,355	-727,679	
1 454,312 -690.493	1	444.210	-674,290	
1 436,928 -670.041	1	444.666	-661,149	
1 426,711 -691.950	1	433.133	-699,250	
1 436,346 -703.938	1	433.794	-705,094	
1 433,269 -704.972	1	431.545	-711,352	
1 395,353 -689.639	1	391.323	-697,608	
1 381,660 -709.338	1	381.202	-712,695	
1 400,456 -712,512	1	421.952	-736.099	
1 418,958 -743.663	1	414.508	-745,848	
1 428,023 -746,796	1	429,254	-742.977	
1 436,812 -730,333	1	448.125	-723,604	
1 455,213 -724,169	1	456,291	-725,620	
1 451,453 -739,336	1	461,955	-742,669	
1 469,323 -744,533	1	474,145	-742.914	
1 440,999 -765.334	1	460.317	-780,362	
1 462,161 -771.952	11	462,372	-764,791	
1 476,217 -754,384	1	470.537	-752,928	
1 470.681 -748.869	1	479,751	-749.858	
1 481.851 -747.344	1	486,800	-746,447	
1 494,695 -756.032	1	493.282	-757,052	
1 507,293 -761,375	1	501.799	-769,174	
1 499,874 -777,785	11	488.881	-780,320	
1 467,362 -784,385	1	494,187	-807,445	
1 501,107 -812.109	1	498,437	-801,657	
1 502,195 -799,917	1	514.019	-800,973	
1 511,912 -785,910	1	509.825	-784,715	
1 512,182 -776.853	1	518.515	-775,774	
1 523,378 -782.461	1	539,128	-791.748	
1 539,363 -797.220	1	536,949	-798,558	
1 533,366 -800.379	1	532.770	-800.858	
1 540,499 -805,729	11	545,859	-806,975	
1 540,295 -807.084	1	540.310	-807,820 -804,747	
1 538,693 -809,879	1	534,433	-806,713	-

TABLE A.6 EJECTA DATA FROM PHOTOGRAPH NO. 117 (CONTINUED)

SIZE	COORDI	NATES	SIZE	COORDI	NATES	
CLASS		EASTING	CLASS	NORTHING	EASTING	
				,		
1	533,288	-812.545	1	530.659	-815,338	
1	525,620	-819.592	1	522.081	-816,101	
1	517,648	-813.919	1	513.925	-819,002	
1 1	514,173	-822.295	1	521.878	-824,664	
4	522,494	-824.241	1	526.488	-835,402	
1	531,415	-827.074	1	535.714	-817,812	
1	543.059	-816.415	1	542.068	-818,314	
	549.136	-823.531	1	549.388	-821,538	
1	554.308	-822.014	1	556.756	-822.126	
	563.092 557.362	-814.445 -815.971	1	559,226	-815,522	
1	553,938	-811.874	1	555.023 551.998	-813,616 -811,561	
1	553,894	-806,198	1	559,252	-809.841	
1	560.658	-809.442	1	566,456	-808.002	
1	569,390	-825.932	1	567.109	-824,991	
î	565,627	-824.397	ī	566.909	-829,601	
1	569,124	-828.974	1	576,011	-823,843	
ī	579,248	-820.737	1	591.015	-825,169	
1	592,711	-828.459	1	586,961	-832,637	
1	584,140	-827.769	1	579.821	-832,403	
1	579,003	-830.908	1	576.867	-828,436	
1	5/7,361	-839.659	1	572.802	-839,547	
1	560.320	-834.359	1	546,639	-832,044	
1	541,797	-833.212	1	547.961	-838.047	
1	539,467	-845.070	1	546.395	-846.375	
1	552,465	-856.347	1	557.672	-851.793	
1	560,861	-855.517	1	564.447	-860,345	
. 1	568,494	-860.860	11	568,966	-862,943	
1	571,931	-858.889	1	572.666	-858.192	
1	568,895	-856,788	1	569.642	-855,887	
1	569.279	-854.636	1	571.449	-854,563	
1	572.568	-854.495	1	572.869	-855,581	
1	573.813	-850.155	1	574.330	-847.440	
1	574,409	-846.500	1	575,281	-846,081	
1	589,23 ₀ 594,67 ₃	-848.107 -853.755	1	590.397	-848,888	
1	601,477	-862.538	1	591.029	-860,765 -849,762	
1	604,495	-839.730	1	602.199	-840,929	
1	611,024	-843.962	1	608.186	-844.695	
î	606,907	-844.427	1	607.304	-849,792	
*	0001707	0111727	1	0071004	0171776	

TABLE A.6 EJECTA DATA FROM PHOTOGRAPH NO. 117/ (CONTINUED)

SIZE	COORDI	NATES	SIZE	COORDI	VATES	
CLASS		EASTING	CLASS	NORTHING	EASTING	
1	609.898	-848.089	1	610.273	-847.415	_
1	613,348	-845.935	ī	615.522	-847.159	
1	614,905	-848.186	1	615.907	-851,080	
1	611,108	-851.677	1	608.703	-856,546	
1	613,590	-854.060	1	615.336	-856,368	
1	619,313	-855.805	1	619.728	-857.641	
1	620,485	-859.011	1	622.929	-861,033	
1	624,671	-862.283	1	620.823	-863,794	
.1	620.286	-863.093	11	619.625	-861,992	
1	613,014	-875.965	1	604.134	-881,018	
1	601,439	-875.104	1	598.764	-877.661	
1	596,418	-871.272	1	594,406	-869,794	
1	593.341	-871.040	1	593.181	-875.386	
1	591,860	-877.403	1	590.707	-874,493	
1	589,284	-873,909	11	588,991	-869,729	
1	586,319	-868.722	1	584.987	-867,801	
1	583,893	-872.698	1	580,772	-860,381	
1	5/8,245	-858.486	1	568.808	-866,853	
	576,423 581,725	-869,341		576,198	-876,045 -877,944	
1	583,575	-875,436 -879,453	1	584.524 588.561	-877,844	
1	595,588	-883.835	1	596.967	-883,314 -881,094	
1	603,933	-887.035	1	604.745	-890.160	
1	601,749	-887.732	1	601.399	-889,577	
î	593,862	-889,490	i	597,775	-892,668	
1	597,842	-894,188	1	587,745	-902,806	
1	584,273	-902,653	ī	583.442	-910.486	
1	583,019	-917.419	1	567.982	-919.627	
1	562.195	-911.180	1	556,580	-911,020	
1	548,524	-912.585	1	553.442	-903.507	
1	548,355	-904.148	1	546,489	-899,883	
1	563,470	-896.741	1	567.284	-893,249	
1	572,862	-896.553	. 1	578.513	-897,979	
1	579,872	-894.747	1	584.874	-894.334	
1	584,696	-892.674	1	581.505	-887,697	-
1	581,143	-884.076	1	574.841	-876.514	
1	572,013	-876,261	1	566.245	-873,038	
1	564,348	→878.073	1	565.182	-878,988	
1	562,403	-881.610	1	568.318	-882,817	

TAPLE A.6 EJECTA DATA FROM PHOTOGRAPH NO. 117# (CONTINUED)

SIZE	COORDI	MATES	SIZE	COORDI	NATES	
CLASS	NORTHING	EASTING	CLASS	NORTHING	EASTING	
1	567,759	-884.964	1	569.498	-886,960	
1	567.099	-888.616	1	563.150	-889,163	
ī	562,114	-886.764	1	553.687	-887,687	-
ī	557,697	-880.443	ī	556.566	-880.477	
1	551,200	-881.042	1	547.405	-878,284	
1	549,737	-877,466	1	556.852	-876,010	
1	556,584	-874.178	1	557.803	-871,867	
1	555,722	-868.627	1	553.854	-864,167	
1	549,038	-867.896	1	550.196	-858,177	
1	546,279	-854.357	1	537.357	-853.730	
1	524,865	-845.887	1	524.437	+854,967	
1	519,796	-858.194	1	523.650	-862,825	
1	530,558	-861.114	1	533.016	-860,177	
1	534,688	-860.122	1	540.602	-868,405	
1	533,704	-869.986	1	529.444	-870.472	
1	538,567	-876,592	1	537.388	-891.283	
1	535,770	-891.891	1	535.867	-892.640	
1	534.071	-891.789	1	533.701	-900.037	
1	531,109	-903.375	1	529.049	-900,871	
1	522,424	-897.430	11	522.986	-896,101	
1	530,203	-882.463	1	524.400	-880,387	
1	517,472	-877.005	1	512.252	-872.822	
1	509,396	-873.223	1	501,586	-873,265	
1	510.891	-869.845	1	522.213	-873.453	
1	522,293	-872.420	1	519.884	-869,550	
1	513,404	-861.624	1	513.993	-855,301	
1	513,164	-855.451	11	504,815	-858,525	
1	500,907	-854.968	1	504.709	-851,634	
1	498,981	-848.561	1	494,220	-841,494	
1	508,781	-847.644	1	509.524	-839,447	
1	508,162	-837.635	1	505.006	-837,077	
1	508,928	-832,381	1	496.864	-826,744	
1	494,718	-832.438	1	492,061	-831,874	
1	489.510	-830,584	1	479.017	-827,384	
1	475,657	-825.911	1	472,282	-832,739	
1	470.007	-828.596	1	463.100	-831.041	
1	466,281	-817.551	1	466,675	-804.119	
1	456,353	-815,504	1	454.790	-815.071	
1	454,886	-814.475	1	425,303	-820,845	

TABLE A.6 EJECTA DATA FROM PHOTOGRAPH NO. 117 (CONTINUED)

SIZE	COORDI	NATES	SIZE	COORDI	NATES	
CLASS	NORTHING	EASTING	CLASS	NORTHING	EASTING	
1	454.770	-784.461	1	448.059	-779.256	
i	435,750	-792.124	1	432.968	-791.326	
1	417.213	-773.090	1	416.161	-774.372	
ī	411,207	-809.362	1	403.868	-789,187	
1	401,032	-787.483	1	399.304	-783,590	
1	392,652	-781,735	1	386,838	-774,461	
1	358,286	-736.850	1	353.254	-743,752	
1	346,714	-753.386	1	348.234	-755,475	
1	359,523	-781.858	1	367.036	-783,091	
.1	364,946	-785.551	1	362,321	-787,542	
1	359,557	-791.460	1	359.805	-794,488	
1	357,718	-815.387	1	394.490	-809,132	
1	392,742	-813.963	1	394,685	-817,977	
1	393,356	-818.635	11	376.760	-825,243	
1	373,000	-833,059	1	385.980	-843,761	
1	391.321	-846.351	11	400.328	-858,125	
1	415.702	-853.668	1	424.005	-843.262	
1	424,727	-827.932	11	434.202	-859,999	
1	437,410	-863,595	1	438.747	-872,466	
1	442.391	-873.007	1	438.696	-875.327	
1	437,266	-881.635	1	443.936	-884,744	
1	448,904	-887.228	1	446.739	-880,474	
1	445,060	-866.614	1	449.767	-863,118	
1	463.833	-860.912	1	464.491	-861.444	
1	463,199	-864.988	1	476.691	-867,110	
1	480.666	-880.574	<u>1</u>	472.681	-882,937	
1	471,622	-877.680		464.322	-878,799	
1 1	463,686	-881.105	1	461.564	-881,268	
	472,502	-900.451 -805.401		470.038	-892,896	
1	486.008	-895.191 -899.032	1	482,405	-892,438 -883,698	
	507.374	-887.435		501.983	- 892.779	
1	499,200	-902.621	1 1	508.365	-903.102	
1	516,857	-902.694	1	519.574	-905,236	
1	527.538	-906.640	1	534.145	-907,961	
1	534,295	-908.883	1	504.763	-928,445	
1 -	503.491	-927.958	1	498.846	-934.698	
î	499,110	-933.164	1	527.416	-946.799	
•	7 2 - 0		-			

TAPLE A.6 EJECTA DATA FROM PHOTOGRAPH NO. 117 (CONCLUDED)

	INATES	SIZE	C0031-I		
CLASS VORTHING	EASTING	CLASS	DRIHING	EASTIES	
4 507:764	042 074	4	505 000	040 400	
1 523,366 1 528,987	-942.036	1	525.098	-940,188	
	-934,548	1	531.461	-927,203	
1 538,770 1 555,742	-919.119 -925.317	1	545.513	-915.973	
		2	561.465	-651,218	
538, 073. 2 510, 286	-602.443_ -641.424	22	523.025	-628,254	
2 548,841	-694.110	2	531.662 557,250	-680.448	
2 559,128	-733,708			-715.408	
2 659,703	-807,737	2	604.804	-754.971	
	-812.777		658,753	-807,757	
2 657,802 2 5/7,868	-797.542	2 22	580.191	-836,188 -795,991	
2 5/4,017	-797.869	2	533.473	-728,960	
2 486,635	-696.728	2	486.885	-694,029	
2 477,073	-704.814	2	482.916	-730.264	
2 422,876	-648.447	2	421.729	-730.907	
2 449,468	-773.888	2	479.739	-766.559	
2 541,988	-795,461	2	569,494	-818,884	
2 588,860	-831.436	2	575,929	-830.255	
2 591,231	-847,722	2	612,521	-846,871	
2 623.041	-851.538	2	621.035	-860,117	
2 609,656	-881.527	2	597.702	-875,339	
2 584.608	-870.939	2	581.811	-868.227	
2 609,656 2 584.608 2 575.376	-859.223	2	575.136	-861.688	
2 543,781	-855.047	2	529.252	-849.185	
2 523,902	-853.259	2	505.866	-870.195	
2 404.263	-820.897	2	471.928	-820.562	
2 404,263 2 444,968 2 328,007	-779.208	2	364,940	-778,475	
2 328,007	-794.981	2	507.640	-928.201	
2 507.098	-929.254	2	503.799	-931.069	
3 443,288	-645.454	3	543.487	-676.594	
3 536.940	-676.726	3	635.938	-839.826	
3 432,923	-740.428	3	436.302	-741.658	
3 541.793	-813.416	3	551.145	-850.613	
3 503.627	-868.683	3	581.449	-871.178	
3 508.103	-929.734	3	501.273	-934,106	
4 602.514	-757.038	4	494.937	-929.425	
5 678 • 737	-766.902				

TABLE A.7 EJECTA DATA FROM PHOTOGRAPH NO. 136

TOTAL NUMBER OF PARTICLES COUNTED - 13.

SIZE	COORDI	NATES	SIZE	COORDI	NATES
CLASS	NORTHING	EASTING	CLASS	NORTHING	EASTING
20				850 070	
1	625.948	-233.658	1	750.238	-232.579
1	735.059	-180.231	1	733.840	-180.288
1	733.609	-180.649	1	683.298	-159.988
1	674.498	-144.985	1	679.078	-145.240
1	743.008	-83.028	2	694.529	-231.907
2	734.518	-183.413	2	655.264	-199.094
2	679.764	-158.843	3	635.488	-245.700
3	739.218	-183.582	3	713.145	-166.777
3	680.572	-157.802	4	592.080	-243.459

TABLE A.8 EJECTA DATA FROM PHOTOGRAPH NO. 137

TOTAL NUMBER OF PARTICLES COUNTED - 15.

SIZE	COORDI	NATES	SIZE	COORDI	NATES
CLASS	NORTHING	EASTING	CLASS	NORIHING	EASTING
1	900.742	-229.921	1	979.052	-253.645
1	347.988	-185.914	1	922.232	-149.167
1	932.315	-151.030	1	952.343	-155.405
1	978.071	-157.306	1	930.963	-157.990
1	957.794	-144.924	1	955.541	-144.709
1	961.775	-135.728	1	967.294	-114.360
2	978.348	-252.676	2	942.350	-153.678
2	975.086	-76-147			

APPENDIX B

COMPUTER PROGRAM FOR ANALYSIS OF AERIAL PHOTOGRAPHY EJECTA COUNT

The computer program shown in Table B.1 was used to reduce the data from the aerial photographs. Basically, the program established a sampling area based on radial lines and circumferential rings, then searched the data for all missiles falling in the sample area. Weights were assigned to each missile according to its size class, and the ejecta mass density and size class distribution for the sample area were determined. The subroutine in the program calculated the coefficients of a power function relating the ejecta mass density to range from GZ.

TABLE B.1 GE-400 SERIES, FORTRAN IV COMPUTER PROGRAM FOR ANALYSIS OF AERIAL PHOTOGRAPHY DATA

```
Explanation State-
                                                                                        Statement
                     ment
                    Number
                         10002 NDN
                    1010 DIMENSION X(550),Y(550), MSC(550), DEG(550), MT(550), RA(550)
1020 DIMENSION R(15),AR(15), NOMIS(15), TOTWI(15), BM(15)
1030 DIMENSION DENMAS(15), NOMIS1(15), NOMIS2(15), MOMIS3(15)
1040 DIMENSION NOMIS4(15), NOMIS5(15), XNOMIS(15), XND(15)
1050 DIMENSION NCODE(550), MEX(550)
1050 CALL OPENF(1, DAI34)
                             PRINT, ""
PRINT, ""
PRINT, ""
PRINT, ""
EXPOSURE NUMBER"
                      1070
                      1030
                     1090 PRINT, EXP
                     1110 PRINT."
1120 PRINT. NUMBER OF MISSILES ON EXPOSURE"
                    1110 FAIRT, NUMBER OF ....
1120 PRINT, NUMBER OF ....
1130 READ, N....
1140 PRINT, NO. OF SAMPLE SUBAREAS"
                     1170 XM=M

1130 PRINT,

1190 DO 10 I=1, W

1200 READ(1; 707), MSC(1), Y(1), X(1), MCODE(1), MEX(1)
                      1170 XM= M
                      1230 10 CONTINUE
                      1240 707 FORMAT(20X, II, GX, 2F12.4, 21X, II, 4X, I3)
                      1250 DO 1 I=1, N
1250 RA(I)=SQRT((X(I)**2.)+(Y(I)**2.))
                      1290 A=A38(Y(I)/X(I))
                      1300 AX=ABS(X(I)/Y(I))
      Coordinate
                      1310 IF(X(I).GI.O.4ND.Y(I).GI.C)GO TO 70
1320 IF(X(I).GI.O.4ND.Y(I).LI.C)GO IO 71
         Conversion
                      1330 IF(X(I).LT.O.AND.Y(I).LT.0)G0 TO 72
                      1340 IF(X(I).LT.0.4MD.Y(I).GT.0)G0 TO 73
                      1350 70 AN=ATAN(AX)
1360 30 TO 75
      Polar
                      1370 71 AN=ATAN(A)+1.5705
                      1330 GO TO 75
                      1390 72 AN=ATAN(AX)+3.141
                      1400
                                GO IO 75
                      1410 73 AV= ATAV(A)+4.7115
                      1420 75 DEG(I)=47457.3
   Assignment of weight according to missile size classification
                      1430 IF(NSC(I).EC.1) GO TO FC
1440 IF(NSC(I).EC.2) GO TO F1
1450 IF(NSC(I).EC.3) GO TO F2
1450 IF(NSC(I).EC.4) GO TO G3
1470 IF(NSC(I).EC.5) GO TO G3
                      1430 30 VI(I)=3.55
                      1490 30 TO 1
                       1500 31 VI(I)=14.4
```

TABLE B.1 (CONTINUED)

Explanation	State- ment Number	
Definition of Sample Area	1510 1520 1530 1540 1550 1560 1570 1700 1710 1720 1730 1740 1750	GO TO 1 S2 VI(I)=42.2 GO TO 1 GO TO 1 GO TO 1 GO TO 1 B4 VI(I)=200. 1 CONTINUE PRINT, "STARTING RADIUS, RADIAL INTERVAL, ANGULAR BOUNDS" READ, RAI, XINVAL, AB1. AB2 PRINT, (1)=RA1 MI=M+1 DO 2 J=2,M1 2 R(J)=R(J-1)+XINVAL
Defi	1770 1730 1790 1800 1310 1820 1830 1840 1350	DO 3 L=1, M AP=3.141*((R(L+1)**2.)-(R(L)**2.)) AR(L)=AP*((AB2-AB1)/360.) 3 CONTINUE DO 4 K=1, M NOCUNT=0 NCO1=0 NCO2=0 NCO3=0 NCO3=0
Missile search to find missiles falling in sample area and calculation of ejecta mass density and numerical density	1920 1930 1940 1950 1960 1970 1930	NC05=0 WTSUM=0. DO 5 KI=1, N IF(DEG(KI).LT.AB1.OR.DEG(KI).GT.AB2) GO TO 5 IF(RA(KI).GT.R(K).AND.RA(KI).LT.R(K+1)) GO TO 6 GO TO 5 G NCOUNT= NCOUNT+1 IF(NSC(KI).EQ.1) NCO1=NCO1+1 IF(NSC(KI).EQ.2) NCO2=NCO2+1 IF(NSC(KI).EQ.3) NCO3=NCO3+1 IF(NSC(KI).EQ.3) NCO3=NCO3+1 IF(NSC(KI).EQ.4) NCO4=NCO4+1 IF(NSC(KI).EQ.5) MCO5=NCO5+1 WTSUM=NTSUM+WT(KI) 5 CONTINUE NOMIS(K)=NCOUNT NOMIS(K)=NCOUNT NOMIS(K)=NCO1 NOMIS(K)=NCO2 NOMIS(K)=NCO3 NOMISA(K)=NCO3 TOINT(K)=NTSUM DENNAS(K)=TOTAT(K)/AR(K) XNOMIS(K)=TOTAT(K)/AR(K) XNOMIS(K)=NCOIS(K)/AR(K) A CONTINUE

```
Statement
Explanation Statem
                 ment.
               Number
                 2110 7 RM(I)=(R(I)+R(I+1))/2.
                 2120 PRINT, ...
                 2130 PRINT,
                 2140 PRINT, " SAMPLE SUBAREAS"
                2150 PRINT,"
                 2160 PRINT,
                                      NO. RADIUS
                                                            AREA
                                                                               WEIGHT MASS DENSITY"
                 2170 DO 8 I=1, M
2180 PRINT 103,1,RM(I),AR(I),TOINT(I),DENMAS(I)
                 2190 3 CONTINU
                 2200 103 FORMATCI4, F9.3, 1X, E10.4, 4X, E4.2, 1X, F10.4)
                 2210 PRINT, NO. NOMIS NOMISI NOMIS2 NOMIS3 NOMIS4 NOMIS5"
2230 DO 9 T=1, M
2240 9 PRINT 104,I, NOMIS(I), NOMIS1(I), NOMIS2(I), NOMIS3(I), NOMIS4(I
        Output
                 2250A), NOMIS5(I)
2260 104 FORMAT(14,16,17,413)
        Jo
                 2290 PRINT, ...
                2290 PRINT, "
2300 PRINT, "
2310 CALL POWFLS(M,RM,DENMAS,A1,B1)
2320 PRINT, "EJECTA MASS DENSITY VERSUS RANGE"
        Printout
                 2330 PRINT,""
2340 PRINT 105,31
2350 105 FORMAT(37X,F7.3)
                 2360 PRINT 106,A1
                 2370-106 FORMAT(2x,21HEJECTA MASS DENSITY =,E10.4,4H * 9,//)
2350 CALL POWFLS(M,RM,XMD,A2,B2)
2350 PRINT, "MISSILE NUMERICAL DENSITY VERSUS RANGE"
                  2400 PRINT.
                 2410 PRINT 107,32
2420 107 FORMAT(33X,F7.3)
                 2430 PRINT 108, A2
2440 108 FORMATC2X, 17HNO. OF MISSILES = , E10.4, 4H * R, //)
                  2450 END
                 2460 SUBROUTINE POWFLS(NU, XX, YY, A, B)
                  2470 DIMENSION XX(15), YY(15)
2430 SUMLX=0.
      g a power
                  2490 SUMLY=0.
           density
                  2500 SUMLX2=0.
                  2510 SUMLXY=0.
                  2520
                         O=IV UC ON
        and
                  2530 DO 90 I=1, NN
           rumerical
                  2540 IF(XX(I).LT.0.00001.0R.YY(I).LT.0.00001)60 TO 39
                  2550 SUBLX:SUMLX+ALOG(XX(I))
                  2560 SUMLY=SUMLY+ALOG(YY(I))
                  2570 SUMLX2=SUMLX2+(ALOG(XX(I))**2.)
2580 SUMLXY=SUMLXY+(ALOG(XX(I))**ALOG(YY(I)))
            ejecta
                  2590 30 TO 90
                  2600 39 COUNT= MCOUNT+1
                  2610 90 CONTINUE
2520 14 VO-10011NT
            or
         relationsnip
                  2530 KN= H4
2640 D=(SUMLY*SUMLX2)-(SUMLY*SUMLYY)
           density
      Least-square-root
function relations
                  2650 E:(NN*3UNEN2)-(SUMLX**2.)
2650 MEDIA:D/E
2670 F:(NU*SUMEXY)-(SUMEY*SUMEN)
           mass
                  2530
                          3= =/=
                  2690 A=EKACKLOGA)
2700 RETURN
            ejecta
                  2710 END
```

REFERENCES

- 1. J. W. Meyer and A. D. Rooke, Jr.; "Mine Shaft Series, Events Mine Under and Mine Ore, Ejecta Studies"; Miscellaneous Paper N-69-2, September 1969; U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.; Unclassified.
- 2. A. E. Sherwood; "The Effect of Air Drag on Particles Ejected During Explosive Cratering"; UCRL-14974, June 1966; Lawrence Radiation Laboratory, University of California, Livermore, Calif.; Unclassified.
- 3. L. K. Davis; "Mine Shaft Series, Events Mine Under and Mine Ore, Subtask N121, Crater Investigations"; Technical Report N-70-8, March 1960; U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.; Unclassified.
- 4. A. J. Chabai; "Scaling Dimensions of Craters Produced by Buried Explosions"; SC-RR-65-70, February 1965; Sandia Corporation, Albuquerque, N. Mex.; Unclassified.
- 5. L. J. Vortman; "Maximum Missile Ranges from Surface and Buried Explosions"; SC-RR-67-616, September 1967; Sandia Corporation, Albuquerque, N. Mex.; Unclassified.
- 6. L. F. Ingram and R. C. Holmes; "Mine Shaft Series, Events Mineral Lode and Mineral Rock, Technical, Administrative, and Operational Plan"; Special Report 97, July 1969; Defense Atomic Support Agency Information and Analysis Center, General Electric Company, Santa Barbara, Calif.; Unclassified.
- 7. K. L. Saucier; "Properties of Cedar City Tonalite"; Miscellaneous Paper C-69-9, June 1969; U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.; Unclassified.
- 8. D. U. Deere and R. P. Miller; "Engineering Classification and Index Properties of Intact Rocks"; Technical Report No. AFWL-TR-66-116, December 1966; Air Force Weapons Laboratory, Kirtland Air Force Base, N. Mex.; Unclassified.
- 9. C. R. Kolb and others; "Operation Mine Shaft, Geological Investigation of the Mine Shaft Sites, Cedar City, Utah"; Miscellaneous Paper S-70-22 (MS-2170), August 1970; U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.; Unclassified.
- 10. J. N. Strange and W. H. McAnally, Jr.; "Operation Mine Shaft, Surface Effects and Cavity Resulting from the Detonation of a 16-Ton Charge Deep in Granite"; Miscellaneous Paper N-70-4 (MS-2157), July 1970; U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.; Unclassified.
- ll. G. D. Teel; "Airblast Measurements from a 100-Ton TNT Detonation Over Granite--Mineral Rock Event, Mine Shaft Series"; Report No. 1502, October 1970; Ballistic Research Laboratories, U. S. Army Aberdeen Research and Development Center, Aberdeen, Md.; Unclassified.

- 12. L. K. Davis and B. L. Carnes; "Cratering Effects of a 100-Ton TNT Detonation on Granite"; Miscellaneous Paper N-72-1 (MS-2151), February 1972; U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.; Unclassified.
- 13. E. B. Ahlers; "Ferris Wheel Series, Flat Top Event, Project Officers Report--Project 1.5a, Crater Ejecta Studies"; POR-3006 (WT-3006), November 1966; Atomic Energy Commission, Washington, D. C; Unclassified.
- 14. J. Wisotski; "Technical Photography of a 100-Ton TNT Detonation on Granite, Mineral Rock Event"; DRI No. 2543 (MS-2166), June 1970; Denver Research Institute, University of Denver, Denver, Colo.; Unclassified.
- 15. E. E. Addor and H. H. Allen, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss; Letter report to: Chief of Engineers, Department of the Army, Washington, D. C.; Subject: "Overt Ecologic Effects of Ejecta from Nuclear Excavation, Proposed Interoceanic Canal Route 25"; August 1970; Unclassified.

DISTRIBUTION LIST FOR MISCELLANEOUS PAPER N-73-4

Address	No. of Copies
Department of the Army	
HQDA (DAEN-MCN-X/George O. Fellers) Washington, D. C. 20314	1
HQDA (DAEN-CWE-G/Mr. G. W. Prescott) Washington, D. C. 20314	1
HQDA (DAEN-CWE-D/Mr. C. F. Corns) Washington, D. C. 20314	1
HQDA (DAEN-MER-M/LTC D. Hughes) Washington, D. C. 20314	1
HQDA (DAEN-MCE-D/Mr. M. L. Martin) Washington, D. C. 20314	1
Division Engineer U. S. Army Engineer Div., Huntsville ATTN: HNDED-R/Mr. Michael M. Dembo P. O. Box 1600, West Station Huntsville, Ala. 35807	1
Division Engineer U. S. Army Engineer Division, Missouri River ATTN: Library P. O. Box 103, Downtown Station Omaha, Nebr. 68101	1
Director U. S. Army Engineer Waterways Experiment Station ATTN: Mr. L. F. Ingram P. O. Box 631 Vicksburg, Miss. 39180	20
Commander/Director U. S. Army Cold Regions Research and Engineering Laboratory ATTN: Mr. North Smith P. O. Box 282 Hanover, N. H. 03755	1
Commander/Director U. S. Army Cold Regions Research and Engineering Laboratory ATTN: Mr. Ted Vogel P. O. Box 282 Hanover, N. H. 03755	1

Address

Address	Copies
Department of the Army (Continued)	
Commander/Director U. S. Army Cold Regions Research and Engineering Laboratory ATTN: Mr. Scott Blouin P. O. Box 282 Hanover, N. H. 03755	1
Commander U. S. Army Mobility Equipment Research and Development Center ATTN: Mr. E. Leland Fort Belvoir, Va. 22060	1
Commander U. S. Army Mobility Equipment Research and Development Center ATTN: Mr. R. Medding Fort Belvoir, Va. 22060	1
Director Explosive Excavation Research Laboratory U. S. Army Engineer Waterways Experiment Station P. O. Box 808 Livermore, Calif. 94550	1
Director Explosive Excavation Research Laboratory U. S. Army Engineer Waterways Experiment Station ATTN: Document Control for: Technical Library P. O. Box 808 Livermore, Calif. 94550	3
Director U. S. Army Construction Engineering Research Laboratory ATTN: Library P. O. Box 4005 Champaign, Ill. 61820	1
Mr. Henry Solomonson Safeguard System Command ATTN: SSC-DH P. O. Box 1500 Huntsville, Ala. 35807	1
Director U. S. Army Ballistic Research Laboratories ATTN: Mr. J. Meszaros Aberdeen Proving Ground, Md. 21005	1
Director U. S. Army Ballistic Research Laboratories ATTN: Mr. J. Keefer Aberdeen Proving Ground, Md. 21005	1
The state of the s	

Address	No. of Copies
Department of the Navy (Continued)	
Commanding Officer U. S. Naval Weapons Laboratory ATTN: MAL Dahlgren, Va. 22448	1
Commanding Officer & Director Naval Ship Research and Development Center ATTN: Mr. E. Habib Navy Department Washington, D. C. 20007	1
Department of the Air Force	
Lookout Mountain Air Force Station ATTN: Mr. K. Hackman 8935 Wonderland Avenue Los Angeles, Calif. 90041	1
Space and Missile Systems Organization ATTN: MMHH/MAJ Mel Castillo Norton AF Base, Calif. 92409	1
Space and Missile Systems Organization ATTN: SMQNL-3/MAJ Kowalewski AF Unit Post Office Los Angeles, Calif. 90045	1
Commander Strategic Air Command Offutt AF Base, Nebr. 68113	1
Commander Air Force Weapons Laboratory ATTN: Mr. R. W. Henney Kirtland AF Base, N. Mex. 87117	1
Sandia Laboratories ATTN: Dr. M. L. Merritt P. O. Box 5800 Kirtland Air Force Base East, N. Mex. 87115	1
Sandia Laboratories ATTN: W. R. Perret P. O. Box 5800 Kirtland Air Force Base East, N. Mex. 87115	1

Address	No. of Copies
Department of the Air Force (Continued)	
Sandia Laboratories ATTN: Mr. J. Reed P. O. Box 5800 Kirtland Air Force Base East, N. Mex. 87115	1
Sandia Laboratories ATTN: Document Library P. O. Box 5800 Kirtland Air Force Base East, N. Mex. 87115	6
Commander Field Command, Defense Nuclear Agency ATTN: FCDV Kirtland AF Base, N. Mex. 87115	1
Commander Field Command, Defense Nuclear Agency ATTN: FCTG-5 Kirtland AF Base, N. Mex. 87115	1
Commander Test Command, Defense Nuclear Agency ATTN: TCDT-B Kirtland AF Base, N. Mex. 87115	15
Commander Field Command, Defense Nuclear Agency ATTN: FCSD-C Kirtland AF Base, N. Mex. 87115	1
Commander Air Force Weapons Laboratory ATTN: Dr. M. A. Plamondon Kirtland AF Base, N. Mex. 87117	1
Commander Air Force Weapons Laboratory ATTN: MAJ Don Gage Kirtland AF Base, N. Mex. 87117	1
Commander Air Force Weapons Laboratory ATTN: Mr. J. L. Bratton Kirtland AF Base, N. Mex. 87117	1
Commander Air Force Weapons Laboratory ATTN: WLIL	1
Kirtland AF Base, N. Mex. 87117	

Address	No. of Copies
Department of the Air Force (Continued)	
Commander AF Rome Air Development Center ATTN: Mr. R. Mair Griffiss AF Base Rome, N. Y. 13440	1
Air Force Systems Command Andrews Air Force Base ATTN: DEE Washington, D. C. 20331	1
Headquarters, USAF ATTN: AFRDQSN Washington, D. C. 20330	1
Other Government Agencies	
Defense Documentation Center ATTN: Mr. Myer Kahn Cameron Station Alexandria, Va. 22314	12
U. S. Department of the Interior U. S. Geological Survey ATTN: Mr. Harold W. Olsen 345 Middlefield Road Menlo Park, Calif. 94025	1
Director Lawrence Livermore Laboratory P. O. Box 808 Livermore, Calif. 94550	1
Commander White Sands Missile Range ATTN: STEWS-TE-NT, Mr. J. Gorman White Sands Missile Range, N. Mex. 88002	1
Director Los Alamos Scientific Laboratory ATTN: Document Control P. O. Box 1663 Los Alamos, N. Mex. 87544	2
Safeguard Systems Manager Safeguard Systems Office ATTN: Dr. John Shea 1320 Wilson Blvd. Arlington, Va. 22209	1

Address	No. of Copies
Other Government Agencies (Continued)	
Director of Defense Research & Engineering ATTN: Asst. Director (Nuclear Programs) Washington, D. C. 20301	2
Director of Defense Research & Engineering ATTN: Asst. Director (Strategic Weapons) Washington, D. C. 20301	1
Bureau of Public Roads Department of Commerce Federal Highway Administration ATTN: Mr. F. J. Tamanini Chief, Structures and Applied Mechanics Br. Washington, D. C. 20591	1
Div. of Technical Information Extension U. S. Atomic Energy Commission P. O. Box 12 Oak Ridge, Tenn. 37830	2
Colleges and Universities	
University of Illinois, Urbana Campus Department of Civil Engineering Urbana, Ill. 61801	1
University of Denver Colorado Seminary Denver Research Institute, University Park ATTN: Mr. J. Wisotski Denver, Colo. 80210	1
Dr. Nathan M. Newmark Head, Department of Civil Engineering University of Illinois Urbana, Ill. 61801	1
Massachusetts Institute of Technology Division of Sponsored Research ATTN: Dr. R. V. Whitman 77 Massachusetts Avenue Cambridge, Mass. 02139	1
Director, Rock Mechanics Research Group ATTN: Dr. George B. Clark University of Missouri at Rolla Rolla, Mo. 65401	1

Address	No. of Copies
Colleges and Universities (Continued)	
Department of Earth and Planetary Sciences ATTN: Dr. Gene Simmons Massachusetts Institute of Technology Cambridge, Mass. 02139	1
Texas A&M University Center for Tectonophysics ATTN: Professor John Handin College Station, Tex. 77843	1
Eric H. Wang, Civil Engineering Research Facility University of New Mexico Box 188, University Station Albuquerque, N. Mex. 87106	1
Balcones Research Center ATTN: Dr. J. Neils Thompson University of Texas Austin, Tex. 78712	1
Corporations	
Aerospace Corporation ATTN: Mr. Craig Smith P. O. Box 95085 Los Angeles, Calif. 90045	1
Aerospace Corporation ATTN: Dr. Mason Watson P. O. Box 95085 Los Angeles, Calif. 90045	1
Agbabian Associates ATTN: Dr. Jim Workman 250 North Nash St. El Segundo, Calif. 90245	2
Applied Theory Incorporated ATTN: Dr. John G. Trulio 1010 Westwood Blvd. Los Angeles, Calif. 90024	1
Battelle Memorial Insitiute ATTN: Dr. P. N. Lamori 505 King Avenue Columbus, Ohio 43201	1

Address	No. of Copies
Corporations (Continued)	
Bell Telephone Laboratories ATTN: Mr. R. W. Mayo Whippany Road Whippany, N. J. 07981	1
Aerospace Corporation ATTN: Dr. William Brown P. O. Box 1308 San Bernardino, Calif. 92402	1
The Boeing Company ATTN: Mr. G. D. Jones P. O. Box 3707 Seattle, Wash. 98124	1
The Boeing Company ATTN: Mr. H. Leistner P. O. Box 3707 Seattle, Wash. 98124	1
Center of Astrogeology ATTN: Dr. David Roddy 601 East Cedar Avenue Flagstaff, Ariz. 86001	1
U. S. Bureau of Mines ATTN: Mr. Wilbur Duvall Denver Federal Center, Building 20 Denver, Colo. 80225	1
U. S. Bureau of Mines ATTN: Mr. Harry Nicholls Denver Federal Center, Building 20 Denver, Colo. 80225	1
U. S. Bureau of Mines ATTN: Dr. Leonard A. Obert Denver Federal Center, Building 20 Denver, Colo. 80225	1
Harry Diamond Laboratories Library ATTN: Mildred H. Weiner Room 207, Bldg. 92 Connecticut Ave. & Van Ness St. N. W. Washington, D. C. 20438	1
R&D Associates ATTN: Dr. H. F. Cooper, Jr. P. O. Box 3580 Santa Monica, Calif. 90403	1

Address	No. of Copies
Corporations (Continued)	
General Electric Company, Tempo ATTN: Mr. Warren Chan (DASIAC) 816 State Street Santa Barbara, Calif. 93101	1
IIT Research Institute ATTN: Dr. Eliot Raisen 10 West 35th St. Chicago, Ill. 60616	1
IIT Research Institute ATTN: Dr. T. Schiffman 10 West 35th St. Chicago, Ill. 60616	1
Kaman Aircraft Corp., Nuclear Div. ATTN: Mr. D. Sachs 1700 Garden of the Gods Road Colorado Springs, Colo. 80907	1
Kaman Aircraft Corp., Nuclear Div. ATTN: Mr. Dale Seacrist 1700 Garden of the Gods Road Colorado Springs, Colo. 80907	1
Lockheed Missile and Space Company A Division of Lockheed Aircraft Corp. ATTN: Dr. R. E. Meyerott Ill Lockheed Way Sunnyvale, Calif. 94086	1
Los Alamos Scientific Laboratory ATTN: Report Librarian P. O. Box 1663 Los Alamos, N. Mex. 87544	1
Physics International Company ATTN: Dr. Charles Godfrey 2700 Merced Street San Leandro, Calif. 94577	1
Physics International Company ATTN: Mr. Joe Kochly 2700 Merced St. San Leandro, Calif. 94557	1
Physics International Company ATTN: Mr. Fred M. Sauer 2700 Merced St. San Leandro, Calif. 94577	1

Address	No. of Copies
Corporations (Continued)	
General Atomic, Div. of General Dynamics Corp. ATTN: Dr. K. D. Pyatt, Jr. P. O. Box 111 10955 John Jay Hopkins Drive San Diego, Calif. 92112	1
TRW Systems, Inc. ATTN: Mr. F. Galbraith One Space Park Redondo Beach, Calif. 90278	1
TRW Systems Group ATTN: Mr. J. Carpenter 600 E. Mill St. Bldg. 527, Room 710 San Bernardino, Calif. 92402	1
TRW Systems Group ATTN: Dr. Lieberman 600 E. Mill St. Bldg. 527, Room 710 San Bernardino, Calif. 92402	1
TRW Systems Group ATTN: Mr. Fred Pieper Bldg. 527, Room 720 Norton AF Base San Bernardino, Calif. 92402	1
Weidlinger Associates, Consulting Engineers ATTN: Dr. M. L. Baron 110 East 59th St. New York, N. Y. 10022	1
Chief Superintendent Defence Research Establishment, Suffield Ralston, Alberta, Canada	2

OHCT	assilied
Security	Classification

DOCUMENT CONTROL DATA - R & D (Security classification of title, body of obstract and indexing annotation must be entered when the overall report is classified)			
1. ORIGINATING ACTIVITY (Corporate author)	anotation must be a		CURITY CLASSIFICATION
U. S. Army Engineer Waterways Experiment S	U. S. Army Engineer Waterways Experiment Station		ified
Vicksburg, Mississippi		26. GROUP	
3. REPORT TITLE			
OPERATION MINE SHAFT; DISTRIBUTION OF NATU DETONATION OF 100-TON THT CHARGE ON GRANIT		IFICIAL EJI	ECTA RESULTING FROM
4. OESCRIPTIVE NOTES (Type of report and inclusive dates) Final report			
5. AUTHOR(S) (First name, middle initial, last name)			
John W. Meyer, Allen D. Rooke, Jr.			
6. REPORT DATE	78. TOTAL NO. O	FPAGES	7b. NO. OF REFS
September 1973	157		15
88. CONTRACT OR GRANT NO.	98. ORIGINATOR	REPORT NUMB	BER(S)
b. PROJECT NO. Subtask SX30311	MS-2152		
с.	9b. OTHER REPO	RT NO(\$) (Any of	that numbers that may be assigned
d.	WES Misce	llaneous Pa	aper N-73-4
10. DISTRIBUTION STATEMENT			
Approved for public release; distribution	unlimited.		
11. SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY ACTI	VITY
	Defense N Washingto	uclear Age n, D. C.	ncy
13. ABSTRACT Front Mineral Rock the detenation	0 of a 100-t	on enhanta	olly shaped shapes of
TNT on granite, was the last event of the Mi tests primarily concerned with ground shock near the surface of a competent rock medium. was intended as a follow-on to previously co eral Rock (1969) duplicated the geometry and crater ejecta were conducted to determine de the role of the ejection mechanism in crater mation on the hazards associated with natura observed ejecta range of approximately 2,800 larger crater and a more extensive ejecta fi dition to established methods of ejecta meas to obtain spoil volume and distribution para experiment was included, and limited impact trajectories of small natural particles. As Mine Shaft Series, the influence of rock joi Volumetric analysis indicated that 230 yd ³ of ter, about 90 yd ³ of which was deposited in (W = charge weight) was confirmed for empiri Mine Ore/Mineral Rock test geometry. Size of crete particles was also established, confir in diameter) tend to dominate the ejecta fieradii from the detonation. Throwout regions geometry were satisfactorily defined, with gevents. In general, the ejecta mechanics re	ne Shaft Ser and cratering The series inducted similar series in the series of the ser	ries, a prong effects s, conducte clar experient Mine (y and districted with the conducte Mineral I l-pound passes predecess rial photogrammeta districted was lip. A fact of ejecta as a functionaller part noces greate the Mine On the being no	ogram of high-explosive from explosions at or ed in 1968 and 1969, iments in soil. Minore (1968). Studies of ribution, to examine tain additional infor-Rock, with a maximum article, produced a sor, Mine Ore. In adgraphy was introduced ive artificial missile ained from the terminal rock that preceded the ibution was evident. Se ejected from the crator of WO.3 ranges common to the ticles (4 to 8 inches er than 25 to 30 crater re/Mineral Rock test oted between the two

DD FORM 1473 REPLACES OF FORM 1473, 1 JAN 54, WHICH IS OBSOLETE FOR ARMY USE.

Unclassified
Security Classification

157

Unclassified

Security Classification							
14.	KEY WORDS	LINK A		LINK B		LINK C	
L		ROLE	WT	ROLE	WT	ROLE	₩T
	Crater ejecta						
	Explosion effects						
	Granite						
	Mine Shaft (Series)						
	Mineral Rock (Event)						
ì							

Unclassified
Security Classification

In accordance with ER 70-2-3, paragraph 6c(1)(b), dated 15 February 1973, a facsimile catalog card in Library of Congress format is reproduced below:

Meyer, John W

Operation Mine Shaft; distribution of natural and artificial ejecta resulting from detonation of 100-ton TNT charge on granite: Mineral Rock Event, by J. W. Meyer and A. D. Rooke, Jr. Vicksburg, Miss., U. S. Army Engineer Waterways Experiment Station, 1973.

156 p. illus. 27 cm. (U. S. Waterways Experiment Station. Miscellaneous paper N-73-4)

Sponsored by Defense Nuclear Agency, Subtask SX30311. MS-2152.

References: p. 142-143.

1. Crater ejecta. 2. Explosion effects. 3. Granite.
4. Mine Shaft (Series). 5. Mineral Rock (Event).
1. Rooke, Allen D., joint author. II. Defense Nuclear Agency. (Series: U. S. Waterways Experiment Station, Vicksburg, Miss. Miscellaneous paper N-73-4)
TA7.W34m no.N-73-4